
The Why and How of Infrared

Infrared Sources For Airfield LED Lamps: LEDS are "Hot" But not Hot Enough

Edward Carome Lighting Innovations LLC Cleveland, Ohio

LED Light Sources

Long lived: 30,000 - 100,000 hrs High lumen/watt output

- White light LEDs: 100 to 150
- Incandescents: 17
- Halogens: 22
- Compact fluorescents: 45

High energy efficiency

Somewhat confusing – more later

LED Light Source Problems

Generated heat is a major problem

- 1 to 2 watts dissipated in $< 0.1 \text{ mm}^3$ chip
- "Not to exceed chip temperature": 150 °C
- Output and lifetime decrease as T rises
- Required: large fixture heat capacity
- Required: large fixture convection cooling

LED Light Source Problems

Lack of generated heat is a problem

• Required: auxiliary heaters for some airfield applications

CONFLICTING DEVELOPMENTS

- 1. Energy Independence and Security Act 2007
 - Recommends phasing out PAR38 production
- 2. DOE mandated LED PAR38 replacement
- 3. EFVS depend on PAR38 "wasted" infrared
- 4. FAA NexGen is considering using EFVS

MALSR PAR38 Lamps

THE EFVS NEED FOR INFRARED

Discussed in detail at these meetings:

"Airfield lighting has to do with visible, not infrared."

FAA NexGen plans now include consideration of EFVS.

FAA tasked the SAE to set up an airport lighting committee.

Committee Membership

Members from

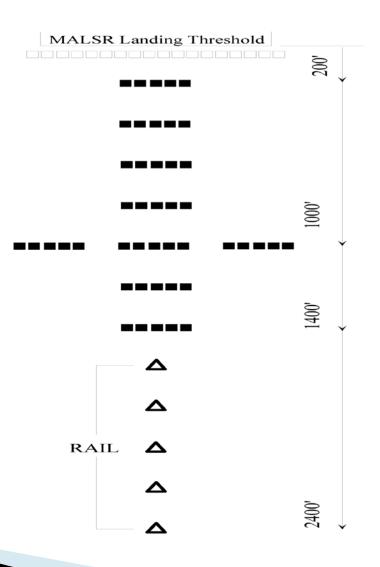
- SAE
- Several FAA sections
- Companies that produce EFVS
- Companies that use EFVS
- Companies that produce airfield lighting systems
- Companies that are developing LED lamps

FAA Qualified EFVS

Only two:

 Kollsman, an Esbit Systems of America company

 CMC Electronics, formerly Canadian Marconi Company, presently an Esterline Group company


FAA Qualified EFVS

- Approximately 1200 systems now in use, increasing at 200 per year
- Cost: \$500,000 to \$1,200,000 each
- Both use indium antimonide (InSb) detectors sensitive from 1 to 5 microns

MALSR Details

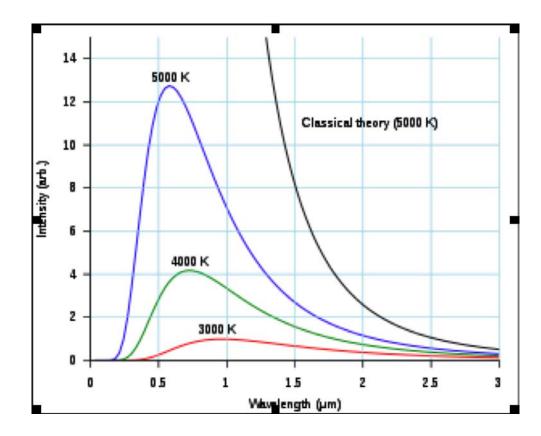
- 1000 plus runways now have MALSRs.
- > Up to 4000 more runways available for MALSRs.
- Each MALSR has 45 PAR38 white light lamps.
- Each has 18 PAR56 green filtered 300w lamps.
- Plans are to replace all 63 with LED lamps.

MALSR LAMP LAYOUT

Early Green LED Threshold Lamp

Early PAR38 LED Replacement

LED Replacements For PAR Lamps

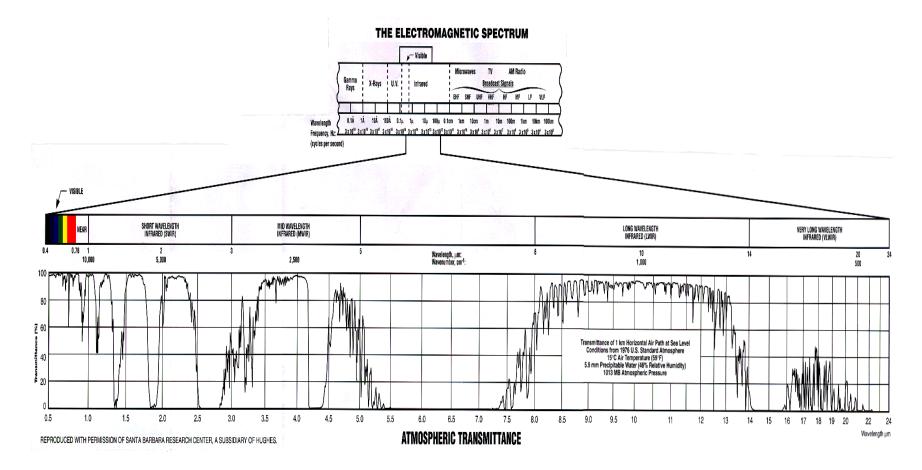

300 watt green filtered PAR56 replacements Early prototypes: 26 1w LEDs + 20w PS Yesterday: 6 3w LEDS + 10w PS

60 watt and 150 watt PAR38 replacements Early prototypes: 9 3w LEDs + 13w PS Yesterday: 6 3w LEDs + 10w PS

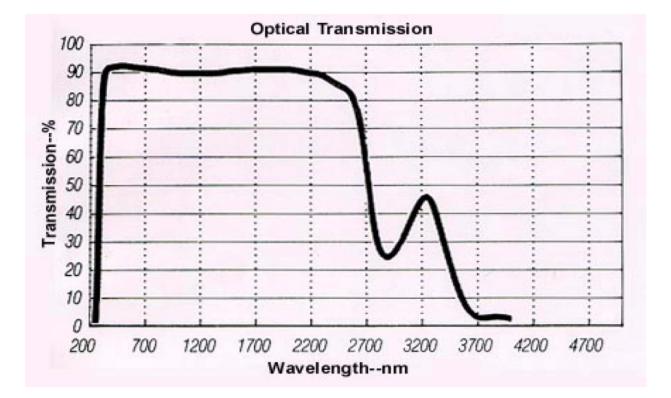
The Heart of the Problem

- Most of the PAR lamp radiation is infrared.
- > The infrared allows EFVS to "see" through fog.
 - Penetration distance proportional to
- This makes EFVS important for NexGen plans.
- LEDs do not emit infrared.
- EFVS cannot "see" LED PAR replacements.

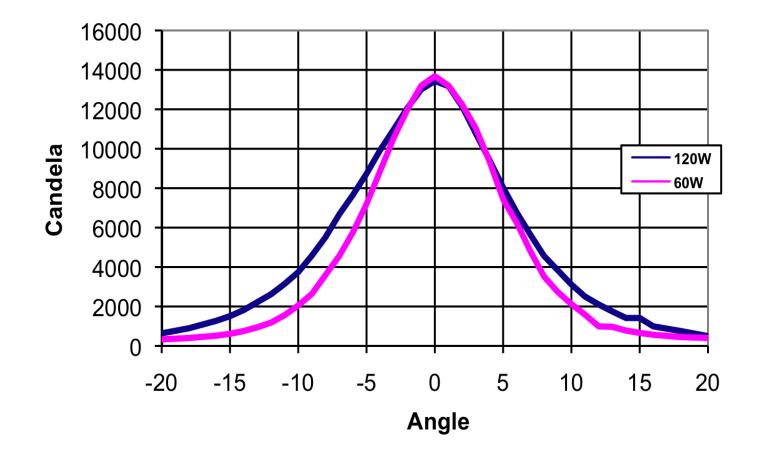
Black Body Spectrum

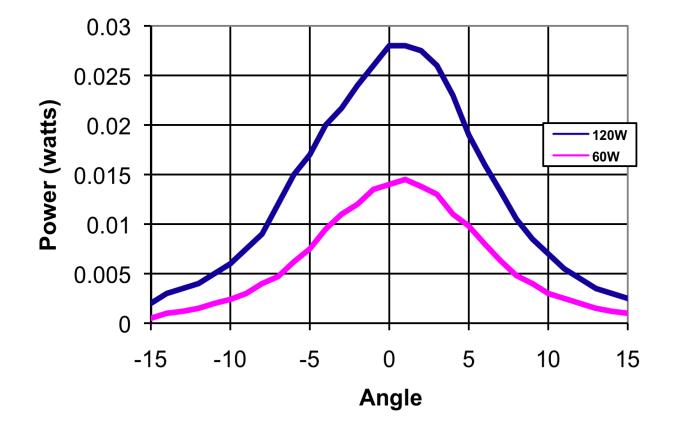


Radiated Energy of a 3000K Black Body


At λ shorter than: In $\Delta\lambda$ range: Visible 0.7µ 8% 8% 0.7 to 1.2 1.2µ 46% 38% 2.4µ 82% 1.2 to 2.4 36% 92% 2.4 to 3.4 10% 3.4µ 5.0µ 97% 3.4 to 5.0 5%

>5.0 3%


Optical Transmission of the Atmosphere


Transmission of the Lamp Envelope

PAR38 Candela Output Patterns

PAR38 Energy Output Patterns

Why LEDs?? Electrical input 3 watts

Visible output 1 watt

Infrared output Negligible

Electrical vs Optical Power

Optical Source Electrical Input Optical Output Efficiency

PAR38 Wattmizer120 watts7 watts6%PAR38 Halogen60 watts4 watts7%White Light LED3 watts1 watt33%

FAA SAE Committee Taskings

The most important for LED lamp developers:

"Lighting equipment that produces the appropriate level of photometric outputbut also emitsan IR signature detectible by <u>current EFVS</u> systems."

Current IR Signatures in 1.2-2.4µ Range

120 Watt PAR38 Peak w/sr: (~ 0.4 x 600 w/sr) 240 w/sr ±8° cone integrated power (~ 0.4 x 23 watts) 9 watts

60 Watt PAR38

Peak w/sr: (~ 0.4 x 312 w/sr)125 w/sr $\pm 8^{\circ}$ cone integrated power
(~ 0.4 x 12 watts)5 watts

FAA LED Replacement "Wish List"

- One-to-one "for today's MALSRs
- Built-in IR sources
 - Solid state
 - Long lived
 - Low cost
 - Energy efficient

Available IR Sources

- Infrared LEDs
- Infrared lasers
- Infrared Incandescents

Energy Efficiency

Solid state devices are more efficient.

Or are they??

Incandescents are ruled out.

Or are they???

Energy Efficiency

LEDs and lasers are more efficient than incandescents."

BUT only in terms of visible output:

~ 0.3 versus ~0.05 optical watt per electrical watt

Energy Efficiency

Regarding infrared output:

Incandescents are more efficient than LEDs and lasers:

~ 0.7 versus ~0.3 optical watt per electrical watt

Cost

LEDs and lasers Several watts infrared 1 to 10 - \$\$\$ -\$\$\$\$ now 60,000 - \$\$ eventually ???

Incandescents Several watts infrared Long lived 1 to 10 – \$\$ now 60,000 – \$ now

Conclusion

- FAA task for LED lamp developers "Lighting equipment that.....also emits....an IR signature detectible by <u>current</u> EFVS systems."
- Solution: Small, lamp mountable incandescent

Immediate, practical, cost effective

Solution: Infrared laser or LED Long term, less "energy efficient", \$\$???