

IES Aviation Lighting Seminar New Jersey – 2010

Gil DAVER - AUGIER[®] - FRANCE

Oct. 2010 (GD)

SUMMARY

- 1. Introduction (Lamp flux control)
- 2. High Intensity Discharge (HID) lamps :
 - Technologies,
 - Operation
 - Solutions
- 3. Control of lighting systems
 - Local
 - Remote
- 4. Airport applications
- 5. Conclusions

1. Introduction

Control of the luminous flux of lamps :
1) Airfield Ground Lighting by current
2) Street Lighting by voltage

<u> 1) AGL – Halogen lamps:</u>

- AGL Constant Current Regulators from 2.8 to 6.6 A
- Use of 1.8 A as a warm up brightness

2) Street lighting – High Intensity Discharge (HID) lamps:

2. HID lamps Technologies

MEASURES on HPS	lamps :				
INPUT Voltage	-10% / Vr / 10%				
OUTPUT Voltage	-30%	-20%	-10%	Vr	+10%
INDUCTIVE ENGINE					
Accurancy of the V control	+/- 3V				
Efficiency of dimmer (%)	> 90%	> 92%	> 95%	> 95%	> 95%
I/O Power factor variation	> 30 %	> 20%	> 10%	> 3-5%	< 1%
Harmonics (%)	< 1%	< 1%	< 1%	< 1%	< 1%
THYRISTOR					
Accurancy of the V control	+/- 3V	+/- 2.5V	+/- 2V	+/- 2V	+/- 2V
Efficiency of dimmer (%)	> 95%	> 95%	> 96%	> 98%	> 98%
I/O Power factor variation	> 50 %	> 30%	> 10%	> 3-5%	< 1%
Harmonics (%)	< 30%	< 15%	< 5%	< 1%	< 5%
IGBT - PWM					
Accurancy of the V control	+/- 1V				
Efficiency of dimmer (%)	> 99%	> 98.5%	> 98.5%	> 99%	> 98.5%
I/O Power factor variation	< 1%	< 1%	< 1%	< 1%	< 1%
Harmonics (%)	< 0.05%	< 0.05%	< 0.05%	< 0.05%	< 0.05%
Temp. at full load & at all V					
Operation temperature (°F)	-10/+130°F	-10/+130°F	-10/+130°F	-10/+130°F	-10/+130°F
Operation temperature (°C)	-25/+55°C	-25/+55°C	-25/+55°C	-25/+55°C	-25/+55°C

2. HID lamps Operation

Type of lamp	Min. of voltage %	Costs saving %					
High Pressure Sodium	78	45-50					
Low Pressure Sodium	83	35					
Mercury Vapor	87	26-30					
Metal Halide	78	40					
Fluorescent with boot	83	35-45					
Fluorescent eco version	83	30-35					
Mikelings on the Application of 83 30 Dimming to High Intensity Discharge Lamps							

A NEMA Lighting Systems Division Document (LSD 14-2002)

« ... generally not lower than 50 percent of rated lamp wattage."

2. HID lamps Operation

American recommendations for roadway lighting

Illuminance for Intersections														
	Functional Classification	Average Maintained Illumination at Pavement by Pedestrian Area Classification								E _{avg} /E,	nin			
			High				Medium		Low					
	Major/Major		34.0/3.4			26.0/2.6		18.0/1.8				3.0		
	Major/Collector 29.		29.0)/2	/2.9		22.0/2.2		15.0/1.5			3.0		
	Major/Local		26.0/2.6		20.0/2.0		13.0/1.3			3.0				
Collector/Collector		24.0/2.4		18.0/1.8		12.0/1.2			4.0					
Collector/Local		21.0/2.1		16.0/1.6		10.0/1.0			4.0					
Local/Local		18.0/1.8			14.0/1.4		8.0/0.8			6.0				
			Medium		6.0/0.	6	9.0/0.9	8.0	/0.8		4.0		0.4	
			Low		4.0/0.	4	6.0/0.6	5.0	/0.5		4.0		0.4	
	Local		High		6.0/0.	6	9.0/0.9	8.0	8.0/0.8		6.0		0.4	
			Medium		5.0/0.	5	7.0/0.7	6.0	/0.6		6.0		0.4	
		L	Low		3.0/0.	3	4.0/0.4	4.0	/0.4		6.0		0.4	

From 'American National Standard Practice for Roadway Lighting, ANSI/IESNA RP-8 – table 9" From 'American National Standard Practice for Roadway Lighting, ANSI/IESNA RP-8 – table 3"

2. HID lamps Operation

Standard operation for cost saving in street lighting

Lamp manufacturers do not agree this explanation ... Why ?

- Global network dimmers operate ONLY with ferromagnetic ballasts
- BECAUSE Electronic ballasts balance the voltage drop !

2. HID lamps Solution

Dimmers with **PWM technology**

An AC/AC converter (PWM several kHz) injects a signal inside an auto-transformer with a ratio at 40% of the rated V

3. Control:- Remote

4 main technologies for remote control: Copper wiring, Optic fiber, Wifi & **GSM**

- 1) <u>Copper wiring:</u>
- Serie communication RS232 with the dimmer –> Difficult to install

2) Optic fiber wiring:

• Serie communication through modem RS232 -> Difficult to install

3) Wifi / Wimax:

• Serie communication through modem –> robustness of the comm.?

4) GSM modem:

- SMS to/from cellular phones
- AND / OR PC Supervision software

3. Control:- Remote

Meet cellular operators -> special prices

3. Control Remote

Individual monitoring of HID lamps

The previous system could include:

- Up stream side:
 - A Global monitoring system with GPS position of lamps

Down stream side:

 An Individual monitoring of the real state of each HID lamp (by Power Line Carrier)

tages:

e maintenance hours **2 600 modules** planning of repairing actions **(HPS-150W)** vantage:

Return On Investment (ROI) quite long

4. Airport applications Main HID lamps uses → Where cost savings are ! 1) Apron

(Manual part IV §13: 20 -> 10 lux)

2) Parks

3) Roads

4) Terminals

Marseille Provence 5 x 27 kVA (Apron) 1 x 36 kVA (Park)

Lyon St Exupery 1 x 27 kVA (Park)

Bâle - Mulhouse 2 x 9 kVA (Park)

5. Conclusions

Si

ate / Province	Cost	Dimmer 9 kVA 1 phase	Dimmer 36 kVA 3 phase	R.O.I.

GREEN INFO			Lighting	Reduced	kVAh saved	Carbon balance
			ON	Power	per year	CO2 Tons (10 years)
Dimmer 1 phase	9	kVA	4 200 h	3 000 h	13 500	12
Dimmer 3 phase	36	kVA	4 200 h	3 000 h	54 000	49

... Thank you for your attention & Think about them ! and at your children future !!!

> Gil DAVER, Export manager AUGIER, your energy <u>gil.daver@augier.com</u> Phone +33 4 9208 6227

