
LEDs - Past, Present and Future

IES Aviation Lighting Committee 2011 Annual Conference

18 October 2011

Presented by: Pete Butler, P.E.

2011-IESALC Wilmington, NC

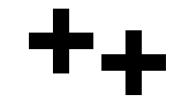
Agenda

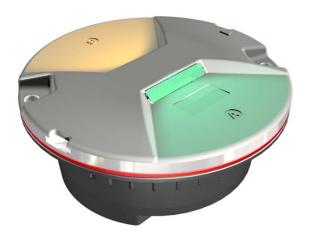
- Definition of LED
- Characteristics of LED Fixtures
- Evolution of LEDs in Airfield Lighting Systems
- Recent Developments
- Airport LED Trends
- Future Implementation
- Design Considerations

Definition of LED

- Light Emitting Diode
- Semiconductor light source
- Within device, electrons jump a gap to recombine with electron holes

- During jump, energy is released in form of photons
- Result phenomenon called electroluminescence
- Color of LED determined by energy gap of semiconductor



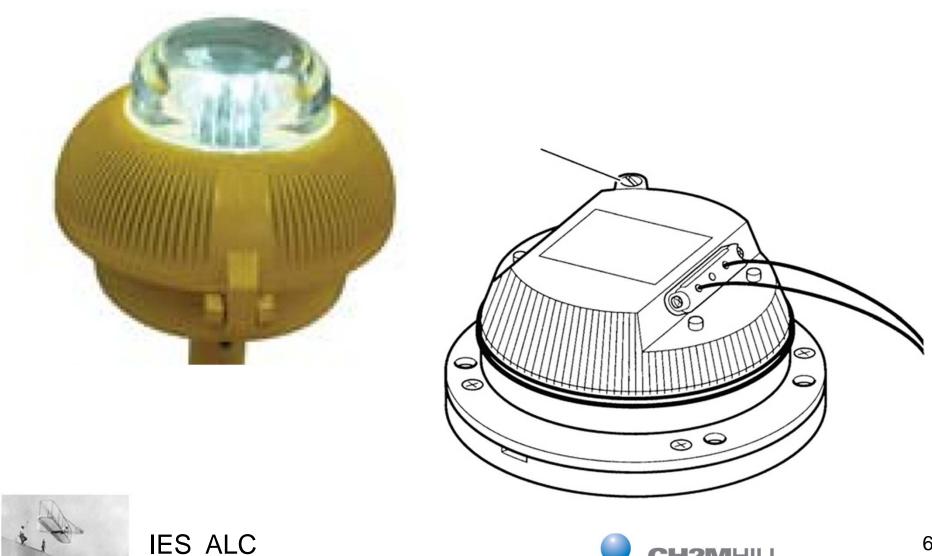


Characteristics of LEDs

Positive Characteristics

- Lower energy consumption
- Longer lifetime
- Improved robustness
- Smaller size
- Faster switching
- Greater durability
- Higher reliability

Characteristics of LEDs


Negative Characteristics

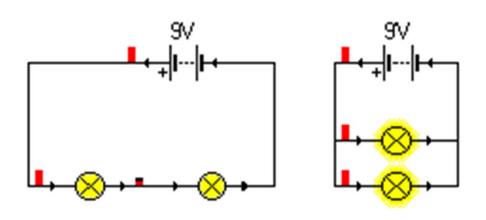
- More expensive
- Require more precise current
- Sensitive to high temperatures
 - Light output decreases
 - Light spectrum negatively impacted
 - Heat sinks / beveled or ridged exterior introduced

Characteristics of LEDs

2011 Annual Conference

CH2MHIII

- Implemented in clusters
- Taxiway elevated edge lights emerged in early 2000s
- Original fixtures resembled lighthouses with cluster at base
- Inherent maintenance issues
- Water infiltration


- LED technology improved, airport interest increased - additional manufacturers developed lights
- Mid 2000s, at least three vendors of edge lights
- Fixtures better resemble typical edge lights

- Fixtures installed in existing 5kV airfield lighting environment
- LEDs are DC-based devices that operate in milliamp range
- As LED technology improved, experts discussed alternate power sources
- Test beds analyzed alternate power sources

Prescott Municipal Airport Testing

- Utilized traditional series lighting circuits
 - Constant current regulators, series lighting cable, isolation transformers, connector kits
- System includes
 - Modified LED edge lights
 - Incandescent edge lights
 - LED guard lights

Prescott Municipal Airport Testing

- Modified edge lights 2.8A maximum
- System utilized 0.28/0.84/2.8A circuit
 Steps percentages same as 6.6A circuit
- Testing proved successful
- System still operating after five years with no fixture failures

Hartsfield-Jackson Atlanta International Airport Test Bed (2006 – present)

- DC-based system (600V DC)
 - LED taxiway centerline
 - LED edge lights
- Modification to Standards
- Airport-funded project

Hartsfield-Jackson Atlanta International Airport Test Bed (2006 – present)

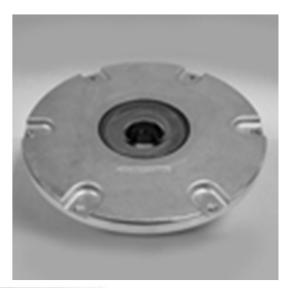
- Small, rack-mounted power supply

 In lieu of constant current regulator
- Fixtures directly connected to circuit
 - Standard connector kits

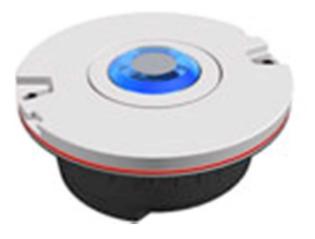
- LED Equipment has evolved significantly
- List of available LED-based lighting equipment has expanded
 - Obstruction lights
 - Elevated and in-pavement lights
 - Signs
 - Windcones

- Obstruction Lights
 - Multiple vendors
 - ADB, Dialight, Crouse-Hinds,
 Point Lighting, TWR, etc.

- Elevated Taxiway Edge Lights
 - Multiple vendors
 - Crouse-Hinds, ADB, Airport Lighting Co., Astronics/DME, others
 - Smooth Lens, Rigged Lenses

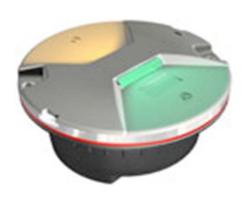


IES ALC 2011 Annual Conference

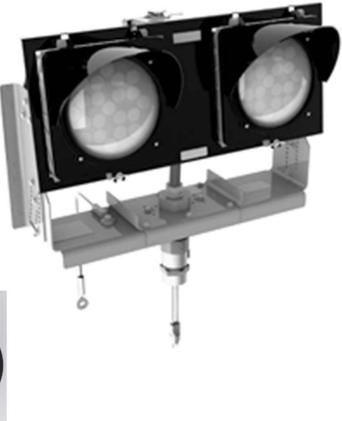


(T)

- In-pavement Taxiway Edge Lights
 - No true FAA specification
 - 8" or 12" diameter
 - Crouse-Hinds, ADB, Multi-Electric



- Taxiway Centerline Lights
 - 8" and 12" diameter
 - Multi-Electric, Crouse-Hinds, ADB,
 Safegate, ATG Airports, others

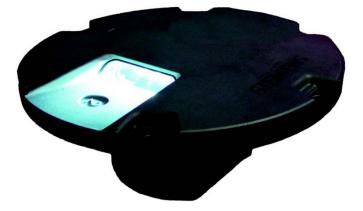


- Elevated Runway Guard Lights
- ADB, Safegate, Crouse-Hinds

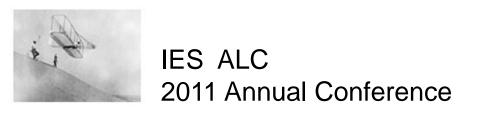
 In-pavement Runway Guard Lights – ADB

Medium-Intensity Runway Edge Lights

 ADB



- Runway Centerline and Touchdown Zone Lights
- ADB, Multi-Electric



- Signage
 - ADB, AGM, Crouse-Hinds, Lumacurve (Standard Signs)

- Wind Cones
 - Isolation Transformer Connection
 - Hali-Brite, ADB

- REILS
 - Isolation Transformer Connection
 - ADB

- LED-supporting equipment
 - Smaller constant current regulators
 - 1kW, 2kW, 4kW
 - Liberty Airport Systems,
 - Manairco

- LED-supporting equipment
 - Smaller isolation transformers
 - 10/15W, 20/25W
 - Amerace, Integro

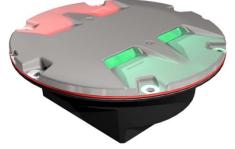
- LED-supporting equipment
 - Sign Retrofit Kits
 - AGM, ADB, Lumacurve

Orlando International Airport Test Bed (2010 to present)

- DC-powered circuits, pulse width modulated
- Two interleaved circuits
- LED Taxiway Centerline Lights
- No isolation transformers
- Rack-mounted power supply

False River Airport Test Bed (2010 to present)

- Funded by State of Louisiana
- DC power supply fed by batteries connected to solar panels
- Two interleaved circuits
- 160 LED Taxiway Edge Lights
- Rack-mounted power supply
- LED Runway Lights


- Runway centerline & touchdown zone lights
 - Certified in last eighteen months
 - Installed at Raleigh-Durham Airport
- Pilot Complaints
 - Fixtures too bright at lower steps
- Moratorium on acquisition and installation
 - Issued in September 2010
 - Impacted project bidding

- FAA tested circuit performance, verified regulator operation, and flight checked lighting
- Test Results
 - LED fixtures brighter at lower steps than incandescent fixtures
 - Light curves differ between LED and incandescent fixtures

- Incandescent fixture output is linear, while LED output is non-linear
- Light Dimming Curve modified for white LED lights only
- Engineering Brief 67C issued, moratorium lifted

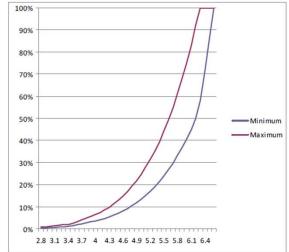
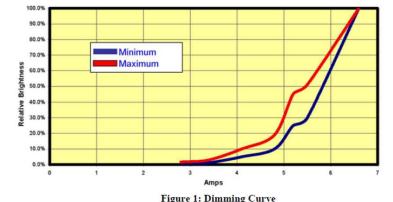



Figure 1: Dimming Curve (Applies To White Light Only)

- Airport / manufacturer focus on runway edge lights
- Will impact majority of airports
- Main restriction to previous development

 Intensity of white LEDs
- Medium-Intensity Lights developed within last year

- High-intensity elevated edge lights
 - Anticipated in late 2011/early 2012
- High-intensity in-pavement edge lights required to coincide with elevated fixtures
- Development of in-pavement edge light has not progressed as quickly

 Slowing HIRL implementation

Airport LED Trends

- O'Hare Airport
 - Taxiway edge and centerline lights only
 - Arctic kits
- Columbus and Rickenbacker Airports
 - Implementation of lights, signs, wind cones, etc.
 - No arctic kits
- Tampa Airport
 - Taxiway edge and centerline lights only
 - No arctic kits

Airport LED Trends

- Denver International Airport
 - Few test fixtures in place
 - Testing DC-based system on a remote taxiway
 - No arctic kits
- Calgary International Airport
 - Implementation of taxiway centerline and edge lights, signs, and elevated guard lights in near future
 - No arctic kits

Airport LED Trends

- Philadelphia Airport
 - Random taxiway edge and centerline lights to date
 - Runway centerline and touchdown zone to implemented in near future
- National and Dulles Airports
 - No LED lighting
 - Bad experience with original version

Airport LED Trends

- Pittsburgh Airport
 - Random taxiway edge and centerline lights only
 - No clear direction of arctic kits
- Bishop Airport (Flint, Michigan)
 - Taxiway edge and centerline lights
 - No arctic kits
- Rochester Airport (Minnesota)
 - Taxiway edge lights and signs
 - No arctic kits

Future Implementation

- System Approach needed
 - Embrace LED properties
 - Maximize efficiency
 - Cease adapting to existing environment / infrastructure

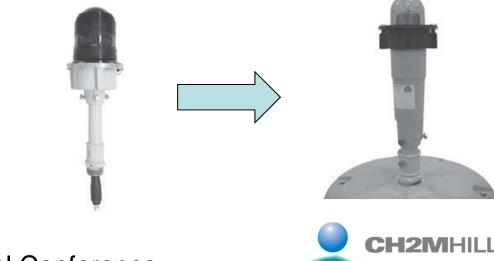
Future Implementation

- Two approaches evolving
 - Lower current series circuit
 - Possible maximum current of 2.8A
 - DC-based system with pulse width modulation
 - FAA has committee considering approaches

- Decision not anticipated for couple years

Future Implementation

- Determination of when LED fixtures become industry standard
- Airports are requesting LED fixtures
 GO GREEN
 - Lower power consumption
- When will incandescent bulbs be obsolete?
- Will FAA provide a mandate?
 - Similar to federal mandate on fluorescent light bulbs
- What can done in the meantime?


- Consider LEDs for lights, signs, wind cones, etc.
 - Maximize energy savings
 - Reduce energy costs
- Match transformer sizes, maximize efficiency
- Don't forget infrastructure

- Plan designs for future LED implementation
- Separate circuits for incandescent and LED fixtures
- Segmenting of circuiting / operations
 - FAA AC does not permit interspersing of LED and incandescent fixtures

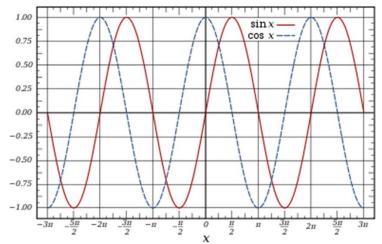
• Analyze impact on circuit loads, vault, etc.

	LED	Incandescent
Light Fixture	Wattage (VA)	Wattage (W)
L-804 – Elevated Runway Guard Light	92	120
L-852A/B - Taxiway Centerline Light - Narrow Beam /Wide Beam	Uni: 12 Bi: 16	Uni: 32 Bi: 64
L-852G - In-Pavement Runway Guard Light	55	120
L-850A - Runway Centerline Light	29	96
L-850B - Touchdown Zone Light	15	45
L-850C - In-Pavement Runway Edge / Displaced Threshold Light	-	45
L-858 - Taxi - Guidance Sign / Distance Remaining Sign	100	192
L-861-T - Elevated Taxiway Edge Light	12	45
L-862 - Elevated Runway Edge / Threshold / Displaced Threshold	-	120

- Perform Life Cycle Cost Analysis
- Analysis Factors to consider
 - Infrastructure held as a constant
 - Material cost
 - Lamp life
 - Energy consumption
 - Replacement cost for incandescent bulbs

- Life Cycle Cost Analysis
 - During the design phase
 - Include in Design Report
 - Designer best suited for task

- Perspective on airport request, needs and future development
- Knowledgeable on impacting factors
- Can FAA provide a standardized format for the analysis?


- Training of maintenance staff
 - Electricians and contractors not completely familiar with the technology
 - Require training session in design documents
 - Develop a second spare parts inventory
 - Specify spare parts during design

- LED equipment typically use pulse-width modulated power supplies
 - Input a AC sine wave
 - Sine wave is sampled and recreated as DC wave to feed the light fixture
 - Inherent concerns created with PWM power supplies

- Harmonics
 - FAA testing has not identified major concerns to date
 - Typical of equipment in place
- Electromagnetic Interference (EMI)
 - Airfield is noisy environment
 - Introduction of PWM power supplies and other switching devices
 - LED fixtures, Runway guard lights, Guidance Signs

- EMI results differ from airport to airport
- Conducted emissions have been identified
 - Interference created with existing equipment
 - Review compatibility of proposed equipment with existing equipment in place
 - Compatibility <u>can not</u> be tested at manufacturer's site
 - Field Testing required to develop best solution

- Arctic Kit or <u>no</u> Arctic Kit
 - Northern Airports apprehension to use LED lights
 - Fixtures won't melt snow
 - Snow melting is inherent property of incandescent fixture
 - Disadvantage arctic kit negates lower LED energy consumption
 - Selection impacts circuit load, regulator size

- Test Beds w/ and w/o Arctic Kits
 - Multiple sites in Midwest
 - Rochester (MN), Flint (MI), O'Hare, Columbus (OH), Toledo (OH)
 - Vendors provided sample fixtures and signs
 - Installed side-by-side prior to winter (two years ago)
 - Heavy year for snowfall
 - Operations and Maintenance staff
 - No discernable difference in light output

- JFK Test Bed
 - Taxiway Centerline Lights w/o kits on Taxiway S
 - Multiple vendors installed
 - Functioning to date
 - Snow melting not an issue
 - Snow plow operations begin at ½" accumulation, snow does not inhibit light output

Conclusions

- LED Technology has evolved very quickly
 - Light house to edge light to runway centerline lights
- LEDs just like all other has technologies
 - Advantages and disadvantages
 - Evolution has become commonplace with some items
- LEDs are 'Here to Stay'
 - Pressure to 'GO GREEN' and lower energy costs
 - Embrace and Utilize the technology
 - Be smart about implementation

THANK YOU

