ILS Tower Design from a Static and Frangibility Perspective

Europoles GmbH & Co KG, Germany Helmut Lieb, R&D

Overview

1. <u>History</u>

a) Wood panels pole

b) Tapered and anti-tapered

c) Export version, cylindrical without resin in the joint

2. <u>Material investigation in fiber glass</u>

a) Fiber glass bending and shear tests – IMA Dresden (institute for material research and application technology)

b) Bolt capacity in fiber glass

c) Influence of UV on fiber glass - UV loaded fiber glass in comparison to non UV loaded fiber glass

d) Influence of temperature on fiber glass together with wind

e) Material behavior in respect of damping - resonance on wind gusts and further frequencies

f) National American Meteorological Service

g) Loadcase: temperature, wind

h) Design

3. <u>References</u>

a) Guam

b) Japan

c) Schwäbisch Hall

4. <u>Accidents</u>

a) Movie

b) Pictures

5. <u>Frangibility</u>

a) Report NLRb) Tests Concept Grazc) Tests V2V2, Grazd) Tests SES

6. Frangibility design ideas

7. <u>Final Design</u>

HISTORY

HISTORY – wood panels pole

HISTORY – Tapered and Anti-tapered - Guam

Nr.:1225928

GUAM

carbon fiberglass composite carbon type S15GU990 b = 1200 mm Σ 172 m² fiberglass type S15EU990 b = 1000 mm Σ 216 m² UV-protection for more than 25 years

according statement of Dr. Wiggenraad NLR, National Aerospace Laboratory

 max. horizontal difference deflection of top- and

 bottom-antenna < 5cm at 60 miles/h operational</td>

 wind speed.

 max. torsion of top antenna
 < 2 degree</td>

 at operational windspeed
 60 mph

 max.wind speed Guam
 240 mph

 Aluminum crossbars for stiffness and antenna supports
 AIMgSi0.5

 stainless steel screws and galvanized base plates

the glide slope tower should stay in working order under additional loads as

- ice load up to 30 mm thickness
- hail grain up to Ø 13 mm
- rainfall up to 100 mm/h
- C 20/25 reinforcement and achorbolts(10.9) pored in site

HISTORY - Export Version, cylindrical without resin in the joint

MATERIAL INVESTIGTION IN FIBER GLASS

Fiber Glass Bending and Shear Tests – IMA Dresden (Institute for material research and application technology)

Prüfh	ericht		3.5	Biegeprüfung nach DIN I	EN ISO 14125
			3.5.1	Prüfeinrichtung	
	Ilprüfungen an GFK-Masten richt-Nr.: B001/08.2A	DRESDEN	•	TIRAtest 2300, rechnergekoppe 10 kN, Inventar-Nr.: 8004266	elt, Genauigkeitsklasse 1 nach DIN 51221, Kraftmessdose
Inhalts	verzeichnis			Biegebalken, 3-Punkt Biegung	
	fgabenstellung			Prüfbedingungen Gesamtprobenzahl: 6 Prüfgeschwindigkeit: v =	= 2 mm / min (1 % / min)
2.1	Anlieferungszustand (*)	7			= 2 mm / min (1 % / min) $m_{el} \times 16 \pm 1 mm$
2.2	Probenzuschnitt und Probenpräparation	8			± 0.2 mm
2.3	Lagerung	8		10054713069175131596790010107659	± 0.2 mm für Probendicken a > 3 mm
3.1	Versuchsdurchführung		:	Dehnungsmessung über Wega Prüfung bei Normklima 23/50 (2	0 x a) x 15 x a [mm] ufnehmer 23 ± 2 ℃, 50 ± 5 % rel. Luftfeuchte) nach
3.2	Zugprüfung nach DIN EN ISO 527-4 bei Temperatur		3	DIN 50014-23/50-2	
3.3 3.4	Druckprüfung nach DIN EN ISO 14126 Bestimmung Fasergehalt nach DIN EN ISO 1172		3.5.3	Versuchsdurchführung	
3.4	Biegeprüfung nach DIN EN ISO 14125			는 것 같은 것 같	aund Dicke mit ± 0,01 mm Messgenauigkeit, Berechnung
3.6	ILSS-Prüfung nach DIN EN ISO 14130	the second s		der Stützweite gemäß Prüfnorm	
3.7	Bestimmung Bolzentragfähigkeit nach DIN EN 13706-1		5		$0.01 \cdot L^2$
3.8	Scheiteldruckprüfung nach DIN 53769		1.6	Berechnung der Prüfgeschwind	igkeit mit $v = \frac{6 \cdot a}{6 \cdot a}$
3.9	UV-Prüfung nach DIN EN ISO 4892-3				rlauf, E-Modul zwischen ε'_B = 0,05 % und ε''_B = 0,25 %,
3.10	Biegekriechprüfung nach DIN EN ISO 899-2		1	estigkeit, Bruchdehnung	
3.11	Zeitstand-Bruchprüfung unter Biegebelastung				
3.12	Dynamische Zugprüfung				
4 Au	swertung	20			
4.1	Auswertung Druckprüfung DIN EN ISO 14126				
4.2	Auswertung Zeitstand-Bruchprüfung				
4.3	Kennwertbestimmung Bauteillaminat				
4.4	Kennwertbestimmung Vergleichslaminat				
5 Ab	minderungsfaktoren				
5.1	Abminderungsfaktor für Langzeitbelastung	52			
5.2	Abminderungsfaktor für Medienbelastung				
5.3	Abminderungsfaktor für Temperaturbelastung	53			
6 Zu	sammenfassung mechanische Kennwerte	53			
(*) Die	Angaben im Kapitel Anlieferungszustand bezüglich der Herstellung des Pre	henmaterials			

gekennzeichnet mit (*), wurden durch den Auftraggeber gemacht und unterliegen nicht der Prü-

fung durch die IMA Dresden.

Fiber Glass Bending and Shear Tests – IMA Dresden (Institute for material research and application technology)

4.4.5 Biegeprüfung nach DIN EN ISO 14125

Proben-Nr.	а	b	L	F	σ_{F}	EF	ε	M _b /b
	[mm]	[mm]	[mm]	[N]	[MPa]	[GPa]	[%]	[N]
B001/08-1-2-BP1	3,83	14,94		1142	476,9	16,426	2,87	0,304
B001/08-1-2-BP2	3,76	14,96	61,0	1199	518,6	17,666	2,95	0,325
B001/08-1-2-BP3	3,79	14,91		1162	496,3	17,072	2,88	0,314
B001/08-1-2-BP4	3,83	14,94		1200	501,0	17,017	2,86	0,320
B001/08-1-2-BP5	3,87	14,93		1162	475,5	16,407	2,76	0,307
B001/08-1-2-BP6	3,93	14,96		1260	499,1	16,435	2,91	0,327
		5 10 1	Mi	ttelwert:	494,6	16,837	2,87	0,316
	-	Standa	ardabwe	eichung:	16,2	0,508	0,1	0,009
Variationskoeffizient:					3,3%	3,0%	2,1%	3,0%
Max:					518,6	17,666	2,95	0,327
Min:					475,5	16,407	2,76	0,304
R _{k0.05} :					456,6	15,648	2,73	0,294

Tabelle 49:	Biegeprüfung nach DIN EN ISO 14125, Prüfrichtung = Mastlängsrichtung,
	Laminat 1.2

Tabelle 50:	Biegeprüfung nach DIN EN ISO 14125, Prüfrichtung = Mastquerrichtung,
	Laminat 1.2

Proben-Nr.	a (mm)	b [mm]	L (mm)	F [N]	σ _F [MPa]	E _F [GPa]	е [%]	M ₆ [N]
B001/08-1-2-BS1	3,76	14,97		209	87,4	7,826	1,98	0,055
B001/08-1-2-BS2	3,72	14,92		226	97,0	7,912	2,22	0,060
B001/08-1-2-BS3	3,67	14,99	50.0	210	91,8	8,044	2,06	0,056
B001/08-1-2-BS4	3,64	14,97	59,0	191	85,2	7,965	1,73	0,052
B001/08-1-2-BS5	3,61	14,87		213	97,2	8,201	2,14	0,059
B001/08-1-2-BS6	3,56	14,99		232	108,2	8,519	2,15	0,064
	0100000	Sen Dispan	Mi	ttelwert:	94,5	8,078	2,05	0,058
		Standa	ardabwe	eichung:	8,3	0,251	0,2	0,004
Variationskoeffizient:					8,8%	3,1%	8,5%	7,5%
Max:					108,2	8,519	2,22	0,064
Min:					85,2	7,826	1,73	0,052
R _{k0.05} :					75,0	7,491	1,64	0,047

Bolt Capacity in Fiber Glass

Prüfbe	ericht		3.7	Bestimmung Bolzentragfähigkeit nach DIN EN 13706-1	
	Iprüfungen an GFK-Masten	DRESDEN	3.7.1	1 Prüfeinrichtung	
Prüfber	icht-Nr.: B001/08.2A		•	TIRAtest 2300, rechnergekoppelt, Genauigkeitsklasse 1 nach DIN 51221, 100 kN für Prüfungen bei Raumtemperatur, Inventar-Nr.: 8004266	K
Inhaltsv	verzeichnis		•	Hydraulische Klemmbacken	
1 Auf	gabenstellung	6	3.7.2	2 Prüfbedingungen	
2 Dur	rchführung	7	•	Gesamtprobenzahl: 6	
2.1	Anlieferungszustand (*)			Prüfgeschwindigkeit: 5 mm / min Prüfrichtung	
2.2	Probenzuschnitt und Probenpräparation		•	Probentyp: 100 x 180 x a [mm]	
2.3	Lagerung		:	Bohrungsdurchmesser: 13 mm Randabstand: 50 mm	
3 Ver	suchsdurchführung			Prüfung bei Normklima 23/50 (23 ± 2 °C, 50 ± 5 % rel. Luftfeuchte) nach	
3.1	Zugprüfung nach DIN EN ISO 527-4 bei Normklimabedingungen			DIN 50014-23/50-2	
3.2	Zugprüfung nach DIN EN ISO 527-4 bei Temperatur				
3.3	Druckprüfung nach DIN EN ISO 14126				
3.4	Bestimmung Fasergehalt nach DIN EN ISO 1172				
3.5	Biegeprüfung nach DIN EN ISO 14125				
3.6	ILSS-Prüfung nach DIN EN ISO 14130	15			
3.7	Bestimmung Bolzentragfähigkeit nach DIN EN 13706-1				
3.8	Scheiteldruckprüfung nach DIN 53769				
3.9	UV-Prüfung nach DIN EN ISO 4892-3				
3.10	Biegekriechprüfung nach DIN EN ISO 899-2				
3.11	Zeitstand-Bruchprüfung unter Biegebelastung				
3.12	Dynamische Zugprüfung				
4 Aus	swertung				
4.1	Auswertung Druckprüfung DIN EN ISO 14126				
4.2	Auswertung Zeitstand-Bruchprüfung				
4.3	Kennwertbestimmung Bauteillaminat				
4.4	Kennwertbestimmung Vergleichslaminat	27			
5 Abr	minderungsfaktoren				
5.1	Abminderungsfaktor für Langzeitbelastung				
5.2	Abminderungsfaktor für Medienbelastung				
5.3	Abminderungsfaktor für Temperaturbelastung	53			
6 Zus	sammenfassung mechanische Kennwerte				

(*) Die Angaben im Kapitel Anlieferungszustand bezüglich der Herstellung des Probenmaterials, gekennzeichnet mit (*), wurden durch den Auftraggeber gemacht und unterliegen nicht der Prüfung durch die IMA Dresden.

raftmessdose

4.3 Bestimmung Bolzentragfähigkeit nach DIN EN 13706-2

Tabelle 6:	Bolzentragfähigkeit	Prüfserie	Gewebe
------------	---------------------	-----------	--------

Proben-Nr.	а	D	Fm	σ_{m}		
	[mm]	[mm]	[N]	[MPa]		
B325/09-G-BZ-1	3,02	12,47	3907	103,6		
B325/09-G-BZ-2	2,70	12,44	3056	90,9		
B325/09-G-BZ-3	2,55	12,41	4218	133,4		
	Mittelwert:					
	21,8					
	20,0%					
	133,4					
	90,9					
	52,6					

Tabelle 7: Bolzentragfähigkeit Prüfserie Gewebe

Proben-Nr.	а	D	Fm	σm		
	[mm]	[mm]	[N]	[MPa]		
B325/09-G-BZ-4	3,47	27,03	7702	82,1		
B325/09-G-BZ-5	3,21	27,01	7754	89,5		
B325/09-G-BZ-6	2,21	27,04	5812	97,1		
			Mittelwert:	89,6		
	Standardabweichung:					
	Variationskoeffizient:					
	97,1					
	82,1					
	70,1					

4.4.7 Bestimmung Bolzentragfähigkeit nach DIN EN 13706-1

Tabelle 58: Bestimmung Bolzentragfähigkeit nach DIN EN 13706-1, Prüfrichtung = Mastlängsrichtung, Laminat: 5.3/5.4

Proben-Nr.	a [mm]	d [mm]	F _m [N]	σ _p [MPa]	
B001/08-5.3-BZP1	7,60	13,05	26416	266,3	
B001/08-5.3-BZP2	7,73	13,05	30319	300,6	
B001/08-5.3-BZP3	7,74	12,99	27807	276,6	
B001/08-5.4-BZP4	8,04	13,01	28467	272,2	
B001/08-5.4-BZP5	8,31	13,06	29487	271,7	
B001/08-5.4-BZP6	7,78	13,05	29248	288,1	
10			Mittelwert:	279,2	
Standardabweichung:					
Variationskoeffizient:					
Max: Min: R _{80.05} ;					

Bolt Capacity in Fiber Glass

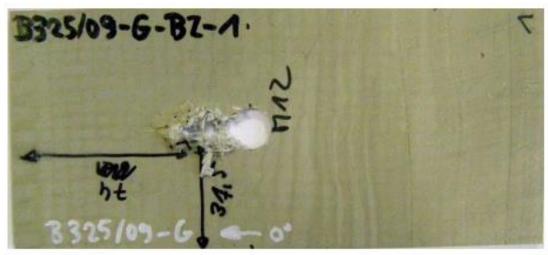


Abbildung 7: Bolzentragfähigkeit Prüfserie Gewebe

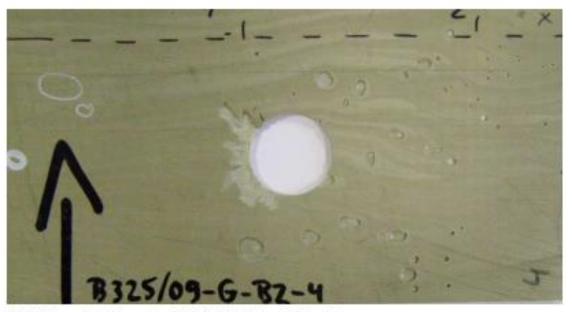


Abbildung 8: Bolzentragfähigkeit Prüfserie Gewebe

Prüfb	ericht	3.9	UV-Prüfung nach DIN EN ISO 4892-3
Materia	alprüfungen an GFK-Masten DRESDEN	3.9.1	Prüfeinrichtung
	richt-Nr.: B001/08.2A	:	Prüfungsdurchführung am Institut für Korrosionsschutz Dresden GmbH Akkreditiertes Prüflabor für Korrosion, Korrosionsschutz und Korrosionsanalytik
Inhalts	verzeichnis	•	DAR-Akkreditierungsnummer: DAP-PL-1131.00
1 Au	ígabenstellung	3.9.2	Prüfbedingungen
2 Du	rchführung		Gesamtprobenzahl: 4
2.1	Anlieferungszustand (*)		Belastungsdauer: 1000 h Probengeometrie: 150 x 100 [mm]
2.2	Probenzuschnitt und Probenpräparation		Normklima 23/50 (23 ± 2 °C, 50 ± 5 % rel. Luftfeuchte) nach
2.3	Lagerung	<i>.</i>	DIN 50014-23/50-2
3 Ve	rsuchsdurchführung	3.9.3	Versuchsdurchführung
3.1	Zugprüfung nach DIN EN ISO 527-4 bei Normklimabedingungen	121202	Kontinuierliche UV-A-Strahlung (340 nm) und Kondensation (1 Zyklus: 8 h UV-A (340 nm)
3.2	Zugprüfung nach DIN EN ISO 527-4 bei Temperatur13		bei 60 °C und 4 h Kondensation bei 50 °C
3.3	Druckprüfung nach DIN EN ISO 1412614		Bestimmung der Farbdifferenzen und des Glanzvermögens nach jeweils 250 h Belastung
3.4	Bestimmung Fasergehalt nach DIN EN ISO 117214		
3.5	Biegeprüfung nach DIN EN ISO 14125		
3.6	ILSS-Prüfung nach DIN EN ISO 14130		
3.7	Bestimmung Bolzentragfähigkeit nach DIN EN 13706-1		
3.8	Scheiteldruckprüfung nach DIN 53769		
3.9	UV-Prüfung nach DIN EN ISO 4892-317		
3.10	Biegekriechprüfung nach DIN EN ISO 899-217		
3.11	Zeitstand-Bruchprüfung unter Biegebelastung 18		
3.12	Dynamische Zugprüfung 19		
4 Au	iswertung		
4.1	Auswertung Druckprüfung DIN EN ISO 14126		
4.2	Auswertung Zeitstand-Bruchprüfung		
4.3	Kennwertbestimmung Bauteillaminat		
4.4	Kennwertbestimmung Vergleichslaminat27		
5 Ab	minderungsfaktoren		
5.1	Abminderungsfaktor für Langzeitbelastung		
5.2	Abminderungsfaktor für Medienbelastung		
5.3	Abminderungsfaktor für Temperaturbelastung		
6 Zu	sammenfassung mechanische Kennwerte		

(*) Die Angaben im Kapitel Anlieferungszustand bezüglich der Herstellung des Probenmaterials, gekennzeichnet mit (*), wurden durch den Auftraggeber gemacht und unterliegen nicht der Prüfung durch die IMA Dresden.

4.4.8 UV-Prüfung nach DIN EN ISO 4892-3

Die bewitterten Seiten der Proben zeigten jeweils erst nach 1000 h Belastung durch UV-A-Strahlung und periodische Kondensation eine geringe Farbdifferenz im Vergleich zum Ausgangswert. Der Prüfbericht mit den gemessenen Einzelwerten ist diesem Prüfbericht angehängt.

Prüfbericht	3.3 Biegeprüfung nach DIN EN ISO 14125 an UV-bestrahlten Laminatstücken
GFK-Materialprüfungen DRESDEN	3.3.1 Personal • Techniker: Hr. Schumann, A2100
DRECDEN	3.3.1 Personal • Techniker: Hr. Schumann, A2100 3.3.2 Prüfeinrichtung • TIRAtest 2300, rechnergekoppelt, Genauigkeitsklasse 1 nach DIN 51221, Kraftmessdose 10 kN, Inventar-Nr.: 8004266 • Biegebalken, 3-Punkt Biegung 3.3.3 Prüfbedingungen • Gesamtprobenzahl: 6 • Prüfgeschwindigkeit: 2 mm / min (1 % / min) • Stützweite: amitel x 16 ± 1 mm • Radius Druckfinne: 5 ± 0,2 mm • Radius Auflager: 5 ± 0,2 mm für Probendicken a > 3 mm • Probengeometrie: (20 x a) x 15 x a [mm] • Dehnungsmessung über Wegaufnehmer • Prüfung bei Normklima 23/50 (23 ± 2 °C, 50 ± 10 % rel. Luftfeuchte) nach ISO 291, Klasse 2 3.3.4 Versuchsdurchführung • 3 Messungen von Breite, Länge und Dicke mit ± 0,01 mm Messgenauigkeit, Berechnung der Stützweite gemäß Prüfnorm • Berechnung der Prüfgeschwindigkeit mit $v = \frac{0,01 \cdot L^2}{6 \cdot a}$ • Bestimmung Kraft-Dehnungsverlauf, E-Modul zwischen $\varepsilon_B = 0,05$ % und $\varepsilon_B = 0,25$ %, Festigkeit, Bruchdehnung,
4.4 Biegeprüfung nach DIN EN ISO 14125 an UV bestrahlten Laminatstücken	

= senkrecht zur UD-Richtung

PkNr.	а	b	L	F	σ_{F}	EF	ε
	[mm]	[mm]	[mm]	[N]	[MPa]	[GPa]	[%]
B001/08-1-2-BS1	3,76	14,97		209	87,4	7,826	1,98
B001/08-1-2-BS2	3,72	14,92		226	97,0	7,912	2,22
B001/08-1-2-BS3	3,67	14,99	59.0	210	91,8	8,044	2,06
B001/08-1-2-BS4	3,64	14,97	59,0	191	85,2	7,965	1,73
B001/08-1-2-BS5	3,61	14,87		213	97,2	8,201	2,14
B001/08-1-2-BS6	3,56	14,99		232	108,2	8,519	2,15
			M	ittelwert:	94,5	8,078	2,05
		eichung:	8,3	0,251	0,2		
		effizient:	8,8%	3,1%	8,5%		

Tabelle 2: Biegeprüfung nach DIN EN ISO 14125, Laminat 1-2, nach UV-Bestrahlung, Prüfrichtung = senkrecht zur UD-Richtung

PkNr	b	а	L	Fm	σ_{F}	EF	з			
	[mm]	[mm]	[mm]	[N]	[MPa]	[GPa]	[%]			
B325/09-2-1-UV1-BS-1	15,01	4,45		268	96,0	8,201	1,52			
B325/09-2-1-UV1-BS-2	15,02	4,49		273	96,1	8,298	1,61			
B325/09-2-1-UV1-BS-3	15,01	4,45	71.0	277	99,4	8,278	1,63			
B325/09-2-1-UV1-BS-4	14,94	4,46	71,0	261	93,5	7,946	1,68			
B325/09-2-1-UV1-BS-5	14,97	4,43		244	88,3	7,863	1,55			
B325/09-2-1-UV1-BS-6	14,97	4,43		260	94,4	7,920	1,62			
	Mittelwert:									
	eichung:	3,7	0,196	0,06						
Variationskoeffizient: 3,89% 2,42% 3,61%										

Tabelle 1: Biegeprüfung nach DIN EN ISO 14125, Laminat 1-2, Ausgangszustand, Prüfrichtung Tabelle 3: Biegeprüfung nach DIN EN ISO 14125, Laminat 1-2, Ausgangszustand, Prüfrichtung = parallel zur UD-Richtung

PkNr.	а	b	L	F	σ_{F}	EF	ε				
	[mm]	[mm]	[mm]	[N]	[MPa]	[GPa]	[%]				
B001/08-1-2-BP1	3,83	14,94		1142	476,9	16,426	2,87				
B001/08-1-2-BP2	3,76	14,96		1199	518,6	17,666	2,95				
B001/08-1-2-BP3	3,79	14,91	61,0	1162	496,3	17,072	2,88				
B001/08-1-2-BP4	3,83	14,94	01,0	1200	501,0	17,017	2,86				
B001/08-1-2-BP5	3,87	14,93		1162	475,5	16,407	2,76				
B001/08-1-2-BP6	3,93	14,96		1260	499,1	16,435	2,91				
			M	ittelwert:	494,6	16,837	2,87				
		Standa	ardabw	eichung:	16,2	0,508	0,1				
	Variationskoeffizient: 3,3% 3,0% 2,1%										

Tabelle 4: Biegeprüfung nach DIN EN ISO 14125, Laminat 1-2 nach UV-Bestrahlung, Prüfrichtung = parallel zur UD-Richtung

PkNr	b	а	L	Fm	σ_{F}	EF	ε
	[mm]	[mm]	[mm]	[N]	[MPa]	[GPa]	[%]
B325/09-2-1-UV2-BP-1	15,02	4,46		1017	377,9	14,284	2,53
B325/09-2-1-UV2-BP-2	15,01	4,57		1075	380,8	14,642	2,64
B325/09-2-1-UV2-BP-3	15,02	4,62	74.0	1058	366,2	15,067	2,57
B325/09-2-1-UV2-BP-4	15,03	4,69	74,0	1133	380,3	14,678	2,80
B325/09-2-1-UV2-BP-5	15,03	4,71		1163	387,1	14,643	2,77
B325/09-2-1-UV2-BP-6	15,01	4,69		1252	421,0	15,458	2,78
			M	ittelwert:	385,5	14,795	2,68
		Standa	ardabw	eichung:	18,7	0,409	0,12
		Varia	tionsko	effizient:	4,84%	2,76%	4,37%

Die Probenserie senkrecht zur UD-Richtung weißt keine Änderung der Materialkennwerte infolge UV-Bestrahlung auf. Die Probenserien parallel zur UD-Richtung zeigen eine Reduktion von 22% für die Festigkeit und 12% für die Steifigkeit.

UV-Bestrahlung:

- Kontinuierliche UV-A-Bestrahlung (340 nm) und Kondensation (1 Zyklus: 8 h UV-A (340 nm) bei 60 °C und 4 h Kondensation bei 50 °C
- Belastungsdauer: 1000 h

Abbildung 9: Biegeprüfkörper Prüfserie Gewebe

Abbildung 10: Biegeprüfkörger Prüfserie Gewebe

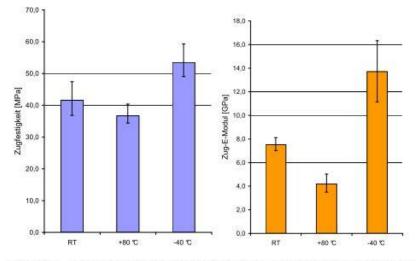
Influence Of Temperature on Fiber Glass

		3.2	Zugprüfung nach DIN EN ISO 527-4 bei Temperatur
Prüfb	ericht The MAA	3.2.1	De//faireishtung
Materia	alprüfungen an GFK-Masten DRESDEN	3.2.	
Prüfbe	richt-Nr.: B001/08.2A	•	Universalprüfmaschine Zwick 1494, Genauigkeitsklasse 0,5 (je nach Messbereich) nach DIN 51221, Inventar-Nr. 022213
1-1-14-		•	Temperaturkammer
	verzeichnis	0.00	Deitherline
1 Au	fgabenstellung6	3.2.2	
2 Du	rchführung		Gesamtprobenzahl: 5/6 je Serie Prüfgeschwindigkeit: 2 mm / min
2.1	Anlieferungszustand (*)7		Probentyp: 270 x 25 x a [mm]
2.2	Probenzuschnitt und Probenpräparation		Probentyp: Aufleimer, Krafteinleitungen ± 45°Glasgewebe
2.3	Lagerung	•	Dehnungsmessung mittels Dehnmessstreifen Prüfung bei -40 ℃ und +80 ℃
3 Ve	rsuchsdurchführung		Prolong bei -40 C und +80 C
3.1	Zugprüfung nach DIN EN ISO 527-4 bei Normklimabedingungen	3.2.3	8 Versuchsdurchführung
3.2	Zugprüfung nach DIN EN ISO 527-4 bei Temperatur13	•	3 Messungen von Breite und Dicke mit \pm 0,01 mm Messgenauigkeit
3.3	Druckprüfung nach DIN EN ISO 1412614		Bestimmung Kraft-Dehnungsverlauf, E-Modul zwischen $\epsilon'_1 = 0.05 \%$ und $\epsilon''_2 = 0.25 \%$,
3.4	Bestimmung Fasergehalt nach DIN EN ISO 117214		Festigkeit, Bruchdehnung
3.5	Biegeprüfung nach DIN EN ISO 14125 15		
3.6	ILSS-Prüfung nach DIN EN ISO 14130 15		
3.7	Bestimmung Bolzentragfähigkeit nach DIN EN 13706-1		
3.8	Scheiteldruckprüfung nach DIN 5376916		
3.9	UV-Prüfung nach DIN EN ISO 4892-3		
3.10	Biegekriechprüfung nach DIN EN ISO 899-2 17		
3.11	Zeitstand-Bruchprüfung unter Biegebelastung		
3.12	Dynamische Zugprüfung19		
4 Au	swertung		
4.1	Auswertung Druckprüfung DIN EN ISO 14126		
4.2	Auswertung Zeitstand-Bruchprüfung		
4.3	Kennwertbestimmung Bauteillaminat		
4.4	Kennwertbestimmung Vergleichslaminat		
5 Ab	minderungsfaktoren		
5.1	Abminderungsfaktor für Langzeitbelastung		
5.2	Abminderungsfaktor für Medienbelastung		
5.3	Abminderungsfaktor für Temperaturbelastung		
6 Zu	sammenfassung mechanische Kennwerte		

(*) Die Angaben im Kapitel Anlieferungszustand bezüglich der Herstellung des Probenmaterials, gekennzeichnet mit (*), wurden durch den Auftraggeber gemacht und unterliegen nicht der Prüfung durch die IMA Dresden.

Influence Of Temperature on Fiber Glass

4.4.3 Zugprüfung nach DIN EN ISO 527-4 bei Temperatur


Tabelle 39:	Zugprüfung nach DIN EN ISO 527-4, Prüftemperatur: -40 °C,
	Prüfrichtung = Mastquerrichtung, Laminat 1.3

Proben-Nr.	a [mm]	b [mm]	F _m [N]	σ _M [MPa]	E [GPa]	F/b/N [N/mm]	
B001/08-1-3-40-ZS1	5,01	25,22	7491	59,3	12,424	74,3	
B001/08-1-3-40-ZS2	5,04	25,21	6502	51,2	14,372	64,5	
B001/08-1-3-40-ZS3	5,00	25,22	7097	56,3	14,066	70,4	
B001/08-1-3-40-ZS4	5,02	25,22	6212	49,1	16,332	61,6	
B001/08-1-3-40-ZS5	5,01	25,23	6817	53,9	13,898	67,6	
B001/08-1-3-40-ZS6	5,07	25,22	6518	51,0	11,135	64,6	
			Mittelwert:	53,5	13,704	67,1	
	S	tandardab	weichung:	3,8	1,775	4,6	
		Variations	koeffizient:	7,2%	13,0%	6,8%	
			max:	59,3	16,332	74,3	
			min:	49,1	11,135	61,6	
			R _{k0.05} :	44,5	9,550	56,4	

Auf Grund des Probenversagens durch Zwischenfaserrisse wurden die zur Dehnungsmessung verwendeten Dehnmessstreifen vor Erreichen der Maximalkraft zerstört. Somit war eine Auswertung der Bruchdehnung nicht möglich.

Tabelle 40: Zugprüfung nach DIN EN ISO 527-4, Prüftemperatur: +80 °C, Prüfrichtung = Mastquerrichtung, Laminat 1.3

Proben-Nr.	a [mm]	b [mm]	F _m [N]	σ _M [MPa]	E [GPa]	е _м [%]	F/b/N [N/mm]
B001/08-1-3-80-ZS1	4,97	25,24	4438	35,4	3,594	1,32	44,0
B001/08-1-3-80-ZS2	4,94	25,20	4286	34,4	3,495	1,34	42,5
B001/08-1-3-80-ZS3	4,85	25,16	4572	37,4	3,854	1,26	45,4
B001/08-1-3-80-ZS4	4,43	25,03	4130	37,2	5,018	0,90	41,3
B001/08-1-3-80-ZS5 4		25,06	4650	40,4	4,674	1,20	46,4
B001/08-1-3-80-ZS6	4,74	25,03	4194	35,4	4,498	1,00	41,9
	10 110 D	<u> </u>	Mittelwert:	36,7	4,189	1,17	43,6
	S	tandardab	weichung:	2,1	0,627	0,18	2,0
	1	Variations	koeffizient:	5,8%	15,0%	15,5%	4,7%
			max:	40,4	5,018	1,34	46,4
			min:	34,4	3,495	0,90	41,3
			R _{k0.05} :	31,7	2,722	0,75	38,8

Abbildung 5: Zusammenfassung Zugfestigkeit, Zugsteifigkeit, Prüfrichtung = Mastquerrichtung, Laminat 1.3

Die Abminderung der Festigkeit in Mastquerrichtung durch Temperatureinfluss beträgt A₃^r=1,13. Die Abminderung des E-Modul beträgt A₃^E= 1,8.

Material Behavior in Respect of Damping – Resonance on wind gusts and further frequencies

3 un

Technische Universität Braunschweig Institut für Stahlbau Prof. Dr.-Ing. U. Peil

Dämpfungsmessung an GfK-Masten

Bericht Nr. 8700

Exemplar 2 von 3

Auftraggeber:

Ingenieursozietät Peil, Ummenhofer und Partner Nordstraße 23 38106 Braunschweig

Dieser Bericht besteht aus 6 Seiten und 3 Anlagen.

Dieser Bericht darf ohne Genehmigung des Institut für Stahlbau nicht auszugsweise vervielfältigt werden. Die in diesem Bericht dargestellten Prüfergebnisse beziehen sich nur auf die beschriebenen Prüfgegenstände.

Institut für Stahlbau der Technischen Universität Braunschweig Beethovenstr. 51 · 38106 Braunschweig

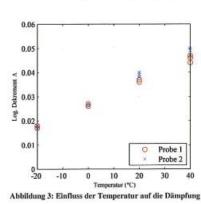
B	Bericht Nr. 8700	Seite I
I	nhaltsverzeichnis	
		Seite
I	Veranlassung und Untersuchungsziel	2
2	Versuchsreihe 1: Logarithmisches Dämpfungsdekrement an Mastmodellen	2
	2.1 Versuchsaufbau	2
	2.2 Auswertung der Messdaten	3
	2.3 Darstellung der Ergebnisse	4
3	Versuchsreihe 2: Logarithmisches Dämpfungsdekrement an GfK-Flachproben bei	
u	nterschiedlichen Temperaturen	5
	3.1 Versuchsaufbau	
	3.2 Auswertung der Messdaten	5
	3.3 Darstellung der Ergebnisse	6

Anlagenverzeichnis

- Zeichnungen Mastmodelle
- 2 Abklingkurven Mastmodelle
- 3 Abklingkurven Flachproben

Institut für Stahlbau der Technischen Universität Braunschweig

Material Behavior in Respect of Damping – Resonance on wind gusts and further frequencies



Abhildung 2: Versuchsaufbau Flachproben (Temperaturkammer geöffnet)

Tabelle 2: Versuch	sergebnisse Mastmodelle			
Mastmodell	Richtung	Logarithmise	ches Dekrement Λ [-]
A	x	0,044	0,054	0,044
	У	0,053	0,048	0,046
В	x	0,049	0,049	0,050
	У	0,055	0,054	0,054
С	x	0,040	0,040	0,040
	У	0,063	0,063	0,066

Temp. [°C]		Probe 1			Probe 2	
-20	0,017	0,018	0,017	0,017	0,018	0,018
0	0,027	0,027	0,026	0,270	0,026	0,027
20	0,037	0,037	0,036	0,039	0,040	0,038
40	0,047	0,046	0,044	0,050	0,047	0,049

Tabelle 3: Versuchsergebnisse Flachproben (Logarithmisches Dekremente A [-])

Abbildung 1: Versuchsaufbau Mastmodelle

4 Zusammenfassung

Es wurden Ausschwingversuche sowohl an GfK-Mastmodellen als auch an den GfK-Flachproben durchgeführt und das logarithmische Dämpfungsdekrement anhand der Abklingkurven bestimmt.

In der Versuchsreihe 1 wurden drei GfK-Mastmodelle mit unterschiedlichen Geometrien bei Raumtemperatur dreimal in je zwei zueinander orthogonalen Ebenen am Zylinderzopf ausgelenkt. Aufgrund der teilweise stark taumelnden Schwingungen wurde die Dämpfung anhand der Abklingkurven aus der Resultierenden beider Beschleunigungssignale bestimmt. Die logarithmischen Dämpfungsdekremente der Mastmodelle variieren zwischen 4,0 und 6,6% (s. Tabelle 2).

In der Versuchsreihe 2 wurden zwei GfK-Flachproben für vier unterschiedliche Temperaturen (-20° bis 40°C) am freien Ende der Probe in Dickenrichtung je dreimal ausgelenkt. Die Temperierung erfolgte mit Hilfe einer Temperaturkammer, die die Flachproben während der Versuche umschloss. Die resultierenden logarithmischen Dekremente variieren dabei von 1,7 bis 5% (s. Tabelle 3). Der Einfluss der Temperatur auf die Dämpfung ist deutlich zu erkennen, mit steigender Temperatur nimmt das logarithmische Dekrement zu (s. Abbildung 3).

Braunschweig, 08. April 2010

Prof. Dr.-Ing. U. Peil

O. Shit Dipl.-Ing. O. Steiln Sachbearbeiter

Institut für Stahlbau der Technischen Universität Braunschweig

NATIONAL AMERICAN METEOROLOGICAL SERVICE

- Mainly 3-hourly readings of temperature and wind speed of the official station of the Oklahoma National American Meteorological Service of the time series from 1986 to 2008 and
- Mostly 6-hourly readings of temperature and wind speed of the official station of the Wichita Falls American national weather service of the time series 1988-2008

Korrelation von Temperatur und Windgeschwindigkeit in Oklahoma/ USA

Klassen von bis	0,0 0,9	1,0 1,9	2,0 2,9	3,0 3,9	4,0 4,9	5,0 5,9	6,0 6,9	7,0 7,9	8,0 8,9	9,0 9,9		11,0 11,9	12,0 12,9	13,0 13,9	14,0 14,9	15,0 15,9				19,0 19,9) 21,0) 21,9	22,0 22,9		24,0 24,9	26,0 26,9	27,0 27,9	29,0 29,9	
von/bis																													
-22.0/-20.1	1																												1
-20.0/-18.1	1			2	1		-		2																				6
-18.0/-16.1	2		1	1	2	2	2		3	1	1	1			1														17
-16.0/-14.1	4	~	0	2	0	0	6	4	5	~	4	2	4	4		4		4											23
-14.0/-12.1	1	2	6	5	12	10	10	0 11	11	5	3	4	1	1		1		1											72
-12.0/-10.1 -10.0/ -8.1	5 17	14	10	14	13 24	19 30	19 29	26	9 17	5 12	6	5	1	2			2												115 252
-8.0/-6.1	25	25	23 62	38 72	58	51	72	38	25	19	9	12	6	6	2	2	2		1	1									487
-6.0/ -4.1	41	29	96	101	93	60	70	46	42	30	15	5	6	4	3	~													642
-4.0/ -2.1	73	65	196	262	190	134	110	85	63	56	27	20	17	6	3	2			1										1310
-2.0/ -0.1	73	70	208	252	177	167	114	78	65	45	25	21	14	2	5	~	1	1											1318
0.0/ 1.9	157	111	447	545	472	314	222	192	144	115	68	38	24	9	2		1		1										2862
2.0/ 3.9	141	133	431	584	504	356	258	236	138	121	87	50	29	10	3	2													3083
4.0/ 5.9	103	104	350	433	416	328	263	201	168	104	66	42	18	10	2	1		1											2610
6.0/ 7.9	154	118	454	629	549	466	388	291	183	152	79	52	19	13	4	2	1			1									3555
8.0/ 9.9	122	102	358	473	485	368	318	241	180	106	69	49	18	7	9		1												2906
10.0/ 11.9	154	128	508	680	605	499	417	355	270	148	115	51	25	11	7	2	2												3977
12.0/ 13.9	143	122	434	668	600	545	425	359	282	177	105	37	28	9	7														3941
14.0/ 15.9	98	97	357	489	477	419	324	267	211	157	76	46	26	11	2	1													3058
16.0/ 17.9	165	146	565	661	703	560	451	362	281	179	112	60	30	17	10	1	2			1									4306
18.0/ 19.9	135	131	510	663	533	475	409	332	249	168	87	61	22	9	4	1				1									3790
20.0/ 21.9	215	178	789	968	733	605	497	420	270	207	113	65	34	10	10		2												1 5117
22.0/ 23.9	176	192	906	1249	924	692	511	373	290	176	101	75	27	17	4	2			1		1			1					1 5719
24.0/ 25.9	85	100	454	758	671	491	371	294	189	122	76	30	15	9	1				1										3667
26.0/27.9	64	93	382	738	703	573	454	341	218	138	80	39	19	6	2														3850
28.0/ 29.9	24	39	185	388	485	430	325	240	151	97	41	25	13	1	1			1											2446
30.0/ 31.9	36	43	164	288	433	413	370	265	174	103	40	10	8	3															2350
32.0/ 33.9	16	24	94	179	273	294	304	214	148	66	35	12	5	1															1665
34.0/ 35.9	8	6	51	84	144	156	146	116	40	25	4	2	1																783
36.0/ 37.9	6	9	24	63	86	124	120	74	34	13	1	1																	555
38.0/ 39.9	2		12	22	27	28	26	22	9																				148
40.0/41.9		2	3	3	8	10	7	2	3	2		1																	41
42.0/ 43.9					1		1																						2
alle	2243	2087	8080	11314	10398	8618	7035	5493	3874	2549	1448	818	412	175	84	17	12	4	5	4	1			1					2 64674

Loadcase: Temperature and Wind

Ingenieursozietät Peil, Ummenhofer und Partner Beratende Ingenieure

Prüfingenieur für Baustatik Schweißfachingenieur Prof. Dr.-Ing. Thomas Ummenhole Dr.-Ing. Michael Siems

Inhaltsverzeichnis

1	Veranlassung	3
2	Beschreibung von Einwirkungen	4
2.1	BÜV-Empfehlungen	4
2.2	P. Beschreibung der Windeinwirkung	6
2.3	Kombinierte Einwirkung von Wind und Temperatur	7
2.4	Ermittlung eines Kombinationsbeiwertes	9
3	Zusammenfassung	11
4	Anhang	12
4.1	Extremwertanalyse der Windgeschwindigkeiten	12
4.2	2 Extremwertanalyse der kombinierten Einwirkung	14
4.3	Quellennachweis	15

Gutachtliche Stellungnahme über kombinierte Auftretenswahrscheinlichkeiten von Wind und Temperatur zur Bemessung von Antennentragwerken aus faserverstärktem Kunststoff

Auftraggeber : Europoles GmbH & Co. KG Ingolstädter Straße 51 P.O. Box 100 444 92318 Neumarkt, Germany

Projekt-Nr.: 10-606

Datum : Braunschweig, den 28.04.2010

Diese gutachtliche Stellungnahme umfasst 15 Seiten einschließlich Deckblatt.

Nordstr. 23 38106 Braunschweig Tel. +49 (0)531 – 12331-00 Fax +49 (0)531 – 12331-11 email: ipu@ipu-bs.de www : ipu-bs.de Seilerstr. 19 38440 Wolfsburg Tel. +49 (0)5361 - 275 93 03 Fax +49 (0)5361 - 275 93 04 email : ipu@ipu-wob.de www: ipu-wob.de

3 Zusammenfassung

In der vorliegenden gutachtlichen Stellungnahme wurde die Auswirkung der Temperatur bei einer Bemessung von faserverstärkten Kunststoffen unter Windeinwirkung betrachtet. Hierzu wurden Messdaten synchroner Windgeschwindigkeits- und Temperaturmessungen von fünf Wetterstationen statistisch ausgewertet.

Eine Abminderung der Werkstoffeigenschaften ist in der BÜV-Empfehlung erst ab Temperaturen von mehr als 30 °C vorgesehen. Starkwindereignisse mit großen Windgeschwindigkeiten treten nicht gemeinsam mit solch hohen Temperaturen auf. Eine Berücksichtigung des Temperatureinflusses ist bei einer Bemessung für Starkwindereignisse mit einer jährlichen Eintretenswahrscheinlichkeit von nicht mehr als 0,05 bzw. 0,02 nicht erforderlich.

Den Betrachtungen dieser gutachtlichen Stellungnahme lagen stets Lufttemperaturen zu Grunde. Für die Beurteilung einer Beeinflussung von Werkstoffeigenschaften wären aber die Materialtemperaturen zu erfassen. Durch die Phasenversschiebung zwischen Luftund Bauteiltemperatur können ungünstigere Kombinationen von Temperatur und Windeinwirkung auftreten. Dieser Effekt wird als nicht maßgebend für die hier behandelte Fragestellung angesehen. Durch die notwendige Zeit, die das Starkwindereignis benötigt, bis die maximale Windgeschwindigkeit vorhanden ist, besteht genügend Zeit für das Bauteil, die Wärme an die Umgebung abzuleiten. Dieser Effekt wird durch die erhöhten Windgeschwindigkeiten noch verstärkt. König und Heunisch Planungsgesellschaft Beratende Ingenieure für Bauwesen KHb

KHP König und Heunisch Planungsgesellschaft

Voraussetzungen

Für die Herstellung der Laminate werden die folgenden Glasfaserwerkstoffe verwendet:

- Saertex 576/360 g/m²
- ROVIGLAS R580
- Vlies 60 g/m²

Der Berechnung der Querschnittswerte werden rechnerische Wanddicken t zugrunde gelegt, die wie folgt bestimmt werden:

Glasfaserwerkstoff	ť
÷	mm/Lage
Saertex 576/360	1,25
ROVIGLAS R580	1,00
Vlies	0,00

Bemessung von Masten aus glasfaserverstärktem Kunststoff

> Dabei dürfen nur im jeweiligen Querschnitt über den gesamten Umfang vorhandene Lagen angerechnet werden.

Grundlagen

Das Bemessungskonzept beruht auf der BÜV-Empfehlung »Tragende Kunststoffbauteile im Bauwesen [TKB] – Entwurf, Bemessung und Konstruktion«, Fassung Oktober 2002.

Die bemessungsrelevanten Werkstoffkennwerte werden aus den im Prüfbericht Nr. B011/08-2, »Materialprüfungen an GFK-Masten« der IMA Dresden mitgeteilten Ergebnissen abgeleitet. Dabei wird von den o.g. rechnerischen Wanddicken ausgegangen, d. h. die in dem genannten Prüfbericht mitgeteilten Versuchsergebnisse werden entsprechend umgerechnet und die statistische Auswertung wird mit den so erhaltenen Werten erneut durchgeführt, da der Umrechnungsfaktor für jeweils eine Versuchsreihe i. d. R. nicht konstant ist, so dass sich mit den umgerechneten Werten u. U. andere statistische Kenngrößen ergeben.

Werkstoffkennwerte

Erfassung der Einsatzbedingungen (rechnerische Abminderung)			
 Dauer der Einwirkung 			
Für die Mastlängsrichtung betragen die Einflussfaktoren A1:			
$A_1^E = 1,4$ für den Elastizitätsmodul und			
$A_1^{f} = 2,4$ für die Festigkeit.			
Für die Mastquerrichtung betragen die Einflussfaktoren A1:			
$A_1^E = 3,0$ für den Elastizitätsmodul und			
$A_1^{f} = 2,4$ für die Festigkeit.			

Auftraggeber: Europoles GmbH & Co. KG Ingolstäder Straße 51 92318 Neumarkt

Aktenzeichen: 080218

KHP König und Heunisch Planungsgesellschaft mbH & Co. KG - Oskar-Sommer-Str. 15-17 - 60596 Frankfurt am Main - HR Frankfurt a. M. A 42774 Komplementär: KHP Beteiligungsgesellschaft mbH - Geschäftsführer: Dr.-Ing. Herbert Duda, Dr.-Ing. Thorsten Faust - HR Frankfurt a. M. B 75826 - 1 -

DESIGN

- Medieneinfluss Für <u>beide Richtungen</u> betragen die Einflussfaktoren A_2 : $A_2^E = A_2^f = 1,2$ für den Elastizitätsmodul und die Festigkeit.	F di te So
– Temperatureinfluss	
Für die <u>Mastlängsrichtung</u> betragen die Einflussfaktoren A ₃ :	
A ₃ ^E = 1,6 für den Elastizitätsmodul bei Betriebstemperaturen ≤ 80 °C	
bzw.	a
A ₃ ^E = 1,2 für den Elastizitätsmodul bei Betriebstemperaturen ≤ 40 °C	
und	
$A_3^f = 1,6$ für die Festigkeit.	
Für die Mastquerrichtung betragen die Einflussfaktoren A3:	
$A_3^E = 1,8$ für den Elastizitätsmodul und	
$A_3^{f} = 1,1$ für die Festigkeit.	m
Pomoon and doo Wii lanston do	J

Bemessungswerte des Widerstands

KHP König und Heunisch Planungsgesellschaft

Da die Variationskoeffizienten für die bemessungsrelevanten Größen nach dem o. g. Prüfbericht auch bei den Bauteillaminaten durchweg < 0,1 sind, werden die folgenden Teilsicherheitsbeiwerte γ_M festgelegt:

6	Grundkombination			Außergewöhnliche		
	Bemessungssituation			ationen		
Festig	- örtliche	Gesamt-	Festig-	örtliche	Gesamt-	
keit	Stabilität	stabilität	keit	Stabilität	stabilität	
1,2	1,4	1,2	1,0	1,2	1,0	

Aus dem o. g. Prüfbericht ergeben sich die folgenden charakteristischen Werkstoffkennwerte:

	Elastizitätsmodul	Zugfestigkeit	Bolzentragfähigkeit
	N/mm ²	N/mm ²	N/mm ²
Mastlängsrichtung	17000	240	190
Mastquerrichtung	6000	35	28 ^{*)}
Interlaminar	÷	20	÷

* In Analogie zur Zugfestigkeit angenommen

Nicht vorwiegend ruhende Belastung

Für die charakteristische Wöhlerlinie (5 %-Quantil) gilt die Gleichung

$$N = 10^6 * \left(\frac{60}{2\sigma_a}\right)^{7.6}$$

mit der Spannungsschwingbreite 2σ,.

- 2 - KHP König und Heunisch Planungsgesellschaft

Für den häufig vorkommenden Fall, dass die nicht vorwiegend ruhende Belastung durch den böigen Wind hervorgerufen wird, kann der ermüdungswirksame Lastanteil bei Annahme der unbegrenzten Gültigkeit der o.g. Wöhlerlinie auf der sicheren Seite zu

 $\operatorname{ers} 2\sigma_a = \max 2\sigma_a * \alpha_w$

angegeben werden, wobei

max $2\sigma_a \approx \max \sigma$ infolge des 50-Jahres-Winds und

$$\alpha_{\rm w} = \frac{\sqrt[7.6]{\Gamma(8,6)}}{\ln(\max n)}$$

mit

max n = 4*108 für 20 Jahre Nutzungsdauer, also

 $a_{W} = 0,18$

ist.

Bei gleichem Sicherheitsbeiwert γ_M für den Spannungs- und den Betriebsfestigkeitsnachweis kann dieser bei der folgenden Abschätzung außer Acht bleiben, d. h. es werden die γ_M -fachen Spannungen betrachtet:

Da es sich beim böigen Wind um eine Kurzzeitbeanspruchung handelt, bei der $A_1^f = 1,0$ gesetzt werden darf, kann die Spannung aus dem 50-Jahres-Wind maximal den Wert

 $max \sigma_d = 240 \text{ N/mm}^2$

erreichen, wenn Temperatur- und Medieneinflüsse, die sich beim Spannungs- und Betriebsfestigkeitsnachweis gleichermaßen auswirken, außer Ansatz bleiben. Wird nach DIN 1055-100 beim Betriebsfestigkeitsnachweis auf der Lastseite der Teilsicherheitsbeiwert zu 1,0 angenommen, so wird

ers
$$2\sigma_s = 0.18 \times 240 / 1.5 = 28.8 \text{ N/mm}^2$$
.

Mit der obigen Wöhlerlinie ist

$$2\sigma_{a,R} = 60 * \sqrt[7]{0} \frac{10^6}{4 * 10^8} = 27.3 \text{ N/mm}^2 \approx 28.8 \text{ N/mm}^2,$$

so dass der Betriebsfestigkeitsnachweis in diesem Fall nicht maßgebend wird.

- 3 -

König und Heunisch Planungsgesellschaft Beratende Ingenieure für Bauwesen KHP König und Heunisch Planungsgesellschaft Bemessung von Masten aus glasfaserverstärktem Kunststoff, Ermüdungswirksamer Windlastanteil

<u>Grundlagen</u>

Der Betriebsfestigkeitsnachweis kann durch Umrechnung des für die nicht vorwiegend ruhende Belastung maßgebenden Beanspruchungskollektivs in ein schädigungsgleiches einstufiges Ersatzkollektiv mit gleichem Kollektivumfang max n und Vergleich der Ordinate des Ersatzkollektivs ers $2\sigma_i$ mit der der Wöhlerlinie des Werkstoffs entnommenen aufnehmbaren Beanspruchung $2\sigma_{i,R}$ erbracht werden.

- I -

In Bild 1 sind die Zusammenhänge schematisch dargestellt.

Bemessung von Masten aus glasfaserverstärktem Kunststoff

Ermüdungswirksamer Windlastanteil

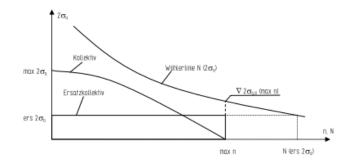


Bild 1: Schädigungsgleiches Ersatzkollektiv, schematische Darstellung

Die durch ein Beanspruchungskollektiv verursachte Schädigung ergibt sich nach der Palmgren-Miner-Hypothese zu

$$D = \int \frac{dn(2\sigma_a)}{N(2\sigma_a)}.$$

Die vorhandene Lastspielzahl mit der Beanspruchungsschwingbreite 20a beträgt

$$dn(2\sigma_1) = max n * f_1(2\sigma_1) * d(2\sigma_2)$$

mit

f_s(2σ_s) Verteilungsdichte der Beanspruchungsschwingbreiten.

Wird für die Wöhlerlinie die unbegrenzte Gültigkeit einer Funktion der Form

Datum: 11.11.2009
$$N(2\sigma_{s}) = \frac{c}{g(2\sigma_{s})}$$

KHP König und Hsunisch Planungsgesellschaft mbH & Co.KG · Oskar-Sommer-Str. 15-17 · 60598 Frankfurt a. M. A 42774 vorausgesellschaft mbH · Geschäftsführer: Dr.-Ing. Herbert Duda, Dr.-Ing. Thorsten Faust · HR Frankfurt a. M. B 75826 handene Beanspruchungskollektiv verursachte Schädigung

Ingolstäder Straße 51 92318 Neumarkt

Europoles GmbH & Co. KG

Aktenzeichen: 080218

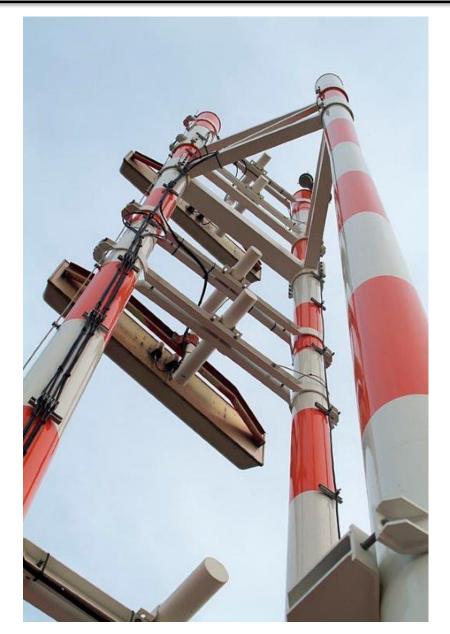
Auftraggeber:

REFERENCES

REFERENCES - Guam

REFERENCES - Guam

REFERENCES - Japan


REFERENCES - Japan

REFERENCES – Schwäbisch Hall

REFERENCES – Schwäbisch Hall

ACCIDENTS

ACCIDENTS - movie

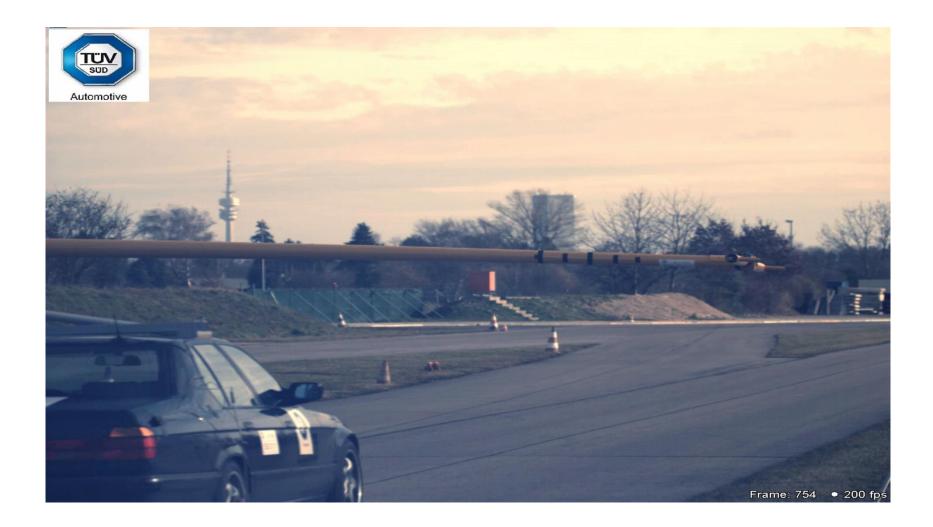
Photo Copyright © EDDL Photography

FRANGIBILITY

FRANGIBILITY – Report NLR, 2003

Nationaal Lucht- en Ruimtevaartlaboratorium

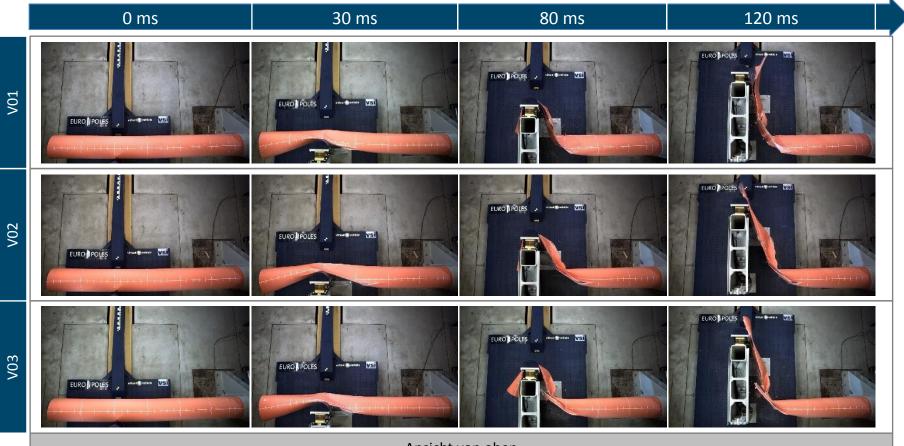
National Aerospace Laboratory NLR



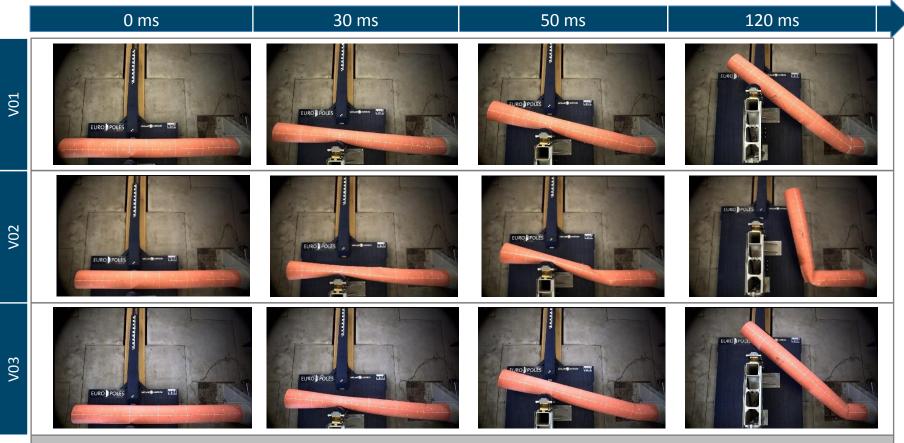
NLR-CR-2003-057

Frangibility analysis of a tubular composite approach light mast by Pfleiderer

M. Nawijn, M.H. van Houten, C.J. Lof and J.F.M. Wiggenraad

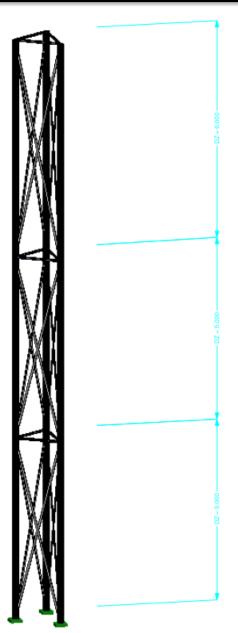

FRANGIBILITY – Tests München, 2008 - movie

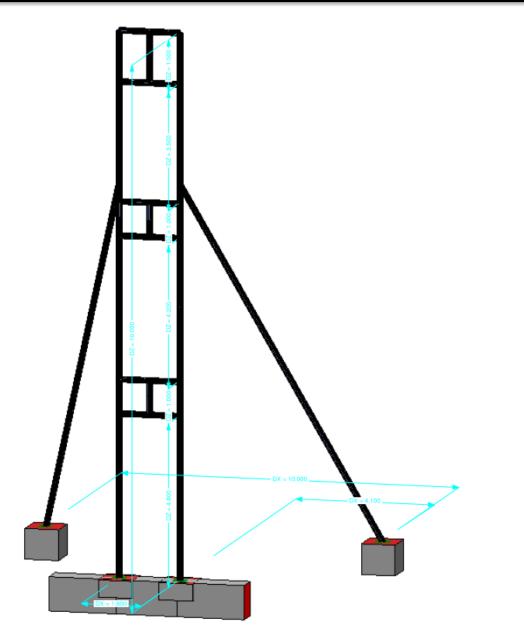
FRANGIBILITY – Tests Leibheim (Concept Graz), 2010 - movie



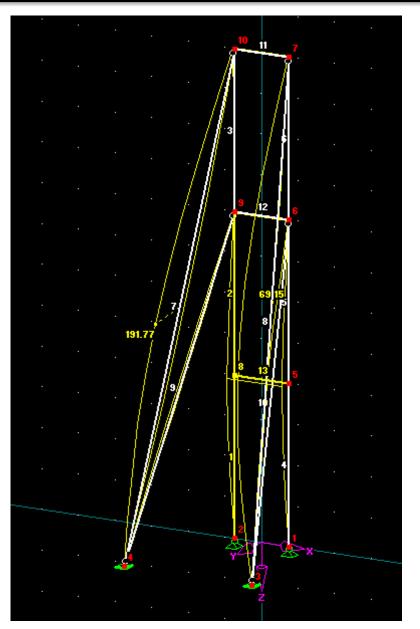
FRANGIBILITY – Tests Graz (Virt. Vehicle Graz) – GFK3 – comparison crash behavior

Ansicht von oben


FRANGIBILITY – Tests Graz (Virt. Vehicle Graz) – CGB - comparison crash behavior



Ansicht von oben


FRANGIBILITY - Tests August 2015 - movie

FINAL DESIGN

FINAL DESIGN - Safety factors along general standard

Tabelle E-1: Empfohlene Teilsicherheitsbeiwerte γ_M im Grenzzustand der Tragfähigkeit (Vorschläge des Arbeitskreises)

Bedingungen	Grundkombination				Außergewöhnliche Bemessungssituationen				conditions	Basic combinations			Exceptional design situations				
	Festig- keit	ortli- che Stabili- tat	Ge- samt- stabili- tät	Verbin dun- gen	Festig- keit	ortli- che Stabili- tät	Ge- samt- stabili- tät	Verbin dun- gen		Stre- ngth	Local stab- ility	Overall stability	Com- pounds	Stre- ngth	Local stab- ility	Overall stab- ility	Com- pounds
maschinell gefertigte Faserver- bundwerkstoffe (v=0,10)	1,2	1,4	1,2	1,5	1,0	1,2	1,0	1,2	Fiber composites machined	1,2	1,4	1,2	1,5	1,0	1,2	1,0	1,2
manuell gefertigte Faserverbundwerkstoffe (v=0,17)	1,5	2,0	1,4	2,0	1,25	1,7	1,25	1,7	Fiber composites manually crafted	1,5	2,0	1,4	2,0	1,25	1,7	1,25	1,7
Thermoplaste auf Zug	1,5*	041	1	8	1,25	1	8		Thermoplastics on train	1,5*				1,25			
Thermoplaste auf Druck	1,2*	1,4	1,2	1,4	1,0	1,2	1,0	1,2	Thermoplastics pressure	1,2*	1,4	1,2	1,4	1,0	1,2	1,0	1,0
Schaumstoffe auf Schub	1,5	1,7	1,2	1,7	22	2	8	1	Foam on thrust	1,5	1,7	1,2	1,7				
Schaumstoffe auf Druck	1,2	1,4	1,2	1,4	(22) (22)	3	12	1.0	Foam on pressure	1,2	1,4	1,2	1,4				

v Variationskoeffizient

*Werte des semiprobabilistischen Sicherheitskonzeptes wegen fehlender Angaben zur Häufigkeitsverteilung durch Vergleichsrechnungen mit globalen Sicherheitsfaktoren ermittelt.

FINAL DESIGN - Design proposal based on general standard and tests

Erfassung der Einsatzbedingungen (rechnerische Abminderung)

- Dauer der Einwirkung

Für die Mastlängsrichtung betragen die Einflussfaktoren A1:

 $A_1^E = 1,4$ für den Elastizitätsmodul und

 $A_1^{f} = 2,4$ für die Festigkeit.

Für die Mastquerrichtung betragen die Einflussfaktoren A1:

A₁^E = 3,0 für den Elastizitätsmodul und

 $A_1^{f} = 2,4$ für die Festigkeit.

- Medieneinfluss

Für <u>beide Richtungen</u> betragen die Einflussfaktoren A₂: A₂^E = A₂^f = 1,2 für den Elastizitätsmodul und die Festigkeit.

- Temperatureinfluss

Für die Mastlängsrichtung betragen die Einflussfaktoren A3:

- A₃^E = 1,6 für den Elastizitätsmodul bei Betriebstemperaturen ≤ 80 °C bzw.
- A₃^E = 1,2 für den Elastizitätsmodul bei Betriebstemperaturen ≤ 40 °C und

 $A_3^{f} = 1,6$ für die Festigkeit.

Für die Mastquerrichtung betragen die Einflussfaktoren A3:

A3E = 1,8 für den Elastizitätsmodul und

 $A_3^{f} = 1,1$ für die Festigkeit.

Teilsicherheitsbeiwerte YM

Gr	undkombir	nation	Außergewöhnliche Bemessungssituationen					
Festig- keit		Gesamt- stabilität		örtliche Stabilität				
1,2	1,4	1,2	1,0	1,2	1,0			

Detecting the operating conditions (calculative reduction)

- Duration of exposure

For the pole longitudinal the influence factor A1 is:

 $A_1^{E} = 1,4$ for the modulus of elasticity and $A_1^{f} = 2,4$ for resistance

For the pole tranverse the influence factor A1 is: $A_1^{E} = 3,0$ for the modulus of elasticity and $A_1^{f} = 2,4$ for resistance

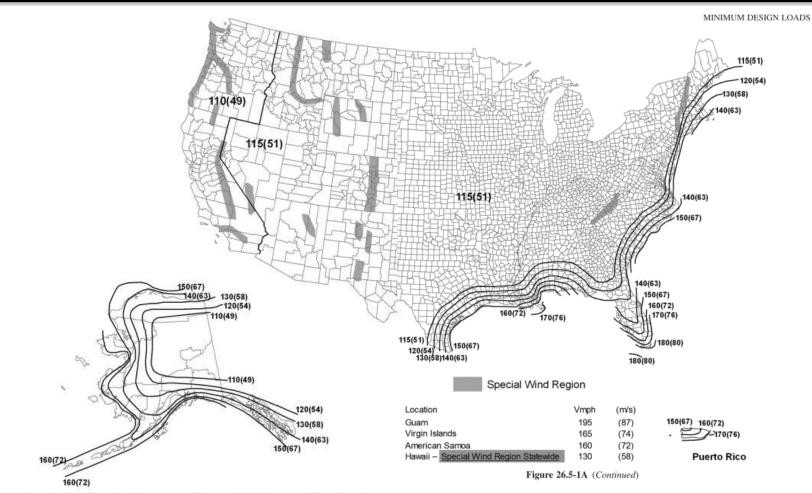
Media influence

For both directions the influence factor A2 is: $A_2^E = A_2^f = 1,2$ for modulus of elasticity and resistance

Temperature effect

For the pole longitudinal the influence factor A3 is:

- A_3^{E} = 1,6 for the modulus of elasticity at operating temperatures $\leq 80^{\circ}C$
- A_3^{E} = 1,2 for the modulus of elasticity at operating temperatures $\leq 40^{\circ}C$


 A_3^{f} = 1,6 for resistance

For the pole tranverse the influence factor A3 is:

 $A_3^{E} = 1,8$ for the modulus of elasticity and $A_3^{f} = 1,1$ for resistance

Bas	sic combinat	ion	Exceptional design situations					
strength	local stability	overall stability	strength	local stability	overall stability			
1,2	1,4	1,2	1,0	1,2	1,0			

FINAL DESIGN - Design proposal for wind speeds

Figure 26.5-1A Basic Wind Speeds for Occupancy Category II Buildings and Other Structures. Notes:

- 1. Values are nominal design 3-second gust wind speeds in miles per hour (m/s) at 33 ft (10m) above ground for Exposure C category.
- 2. Linear interpolation between contours is permitted.
- 3. Islands and coastal areas outside the last contour shall use the last wind speed contour of the coastal area.
- 4. Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examined for unusual wind conditions.
- Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (Annual Exceedance Probability = 0.00143, MRI = 700 Years).

THANK YOU

EURO POLES

