ADB SAFEGATE

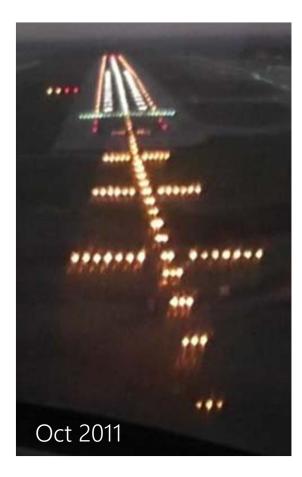
LED-based AFL- Live Long and Prosper!

Sara Bergsten, PhD IES-ALC Annual conference, San Diego October 27th, 2016

LED-based AFL

Red obstruction,ETL cert 1999Taxiway Edge,ETL cert 2001Taxiway edge first installation, 2002

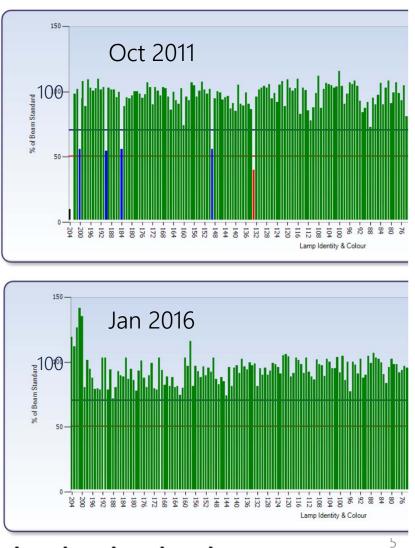
From Taxiway Edge to Approach



All LED airports

Runway and Approach

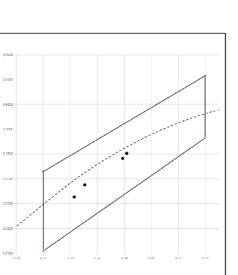
Ashgabat, Turkmenistan Brussels, Belgium Gdansk, Poland Wroclaw, Poland Lyon, France Paris, France

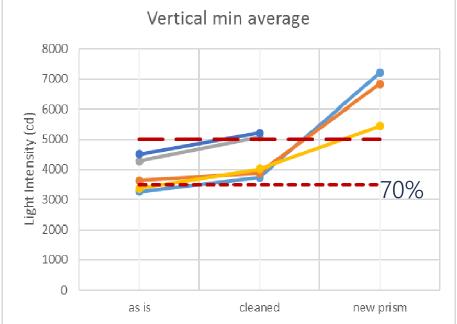

Runway trial in Manchester

- Trial 2010, 26 weeks with prototype fixtures
- New RCL and TDZ fixtures installed Oct 2011
- During 5 years, 4 fixtures have been replaced

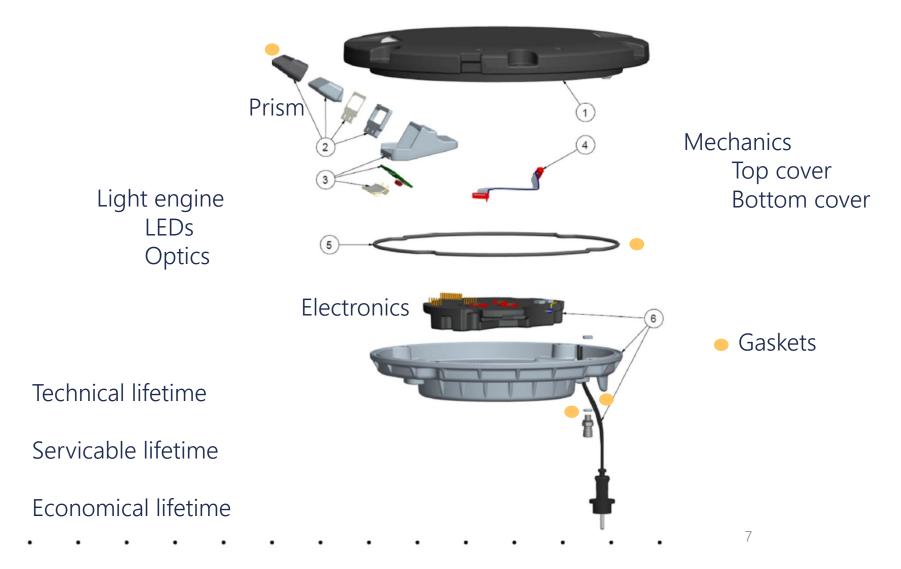
Runway trial in Manchester

- 23 000 hours operation
- 10 000 hours at 6.6A
- Monthly cleaning of prisms
- Photometric measures regulary
- Invested in LED RWY Edge, Thr, End and PAPI




Raleigh Durham LED fixture evaluation

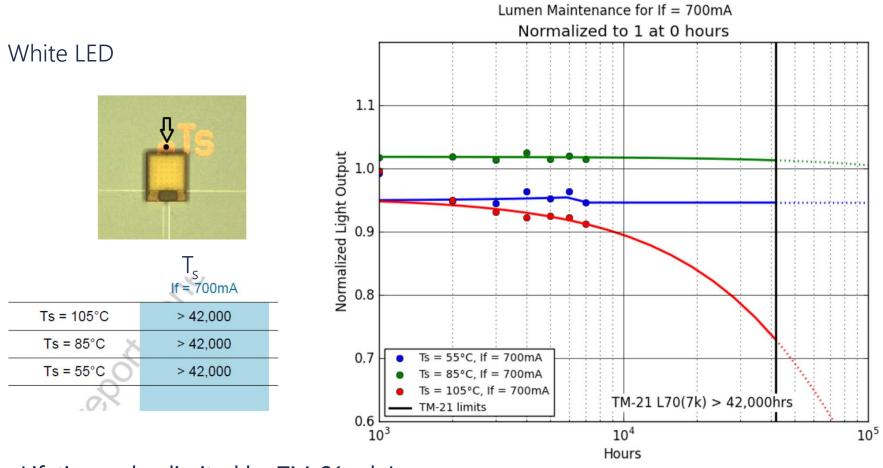
- 4 fixtures
- 3 TDZs and one RCL
- Installed during 2009
- Removed November 2015



By changing prisms, the fixtures are as good as new!

Lifetime definitions

Lifetime of LEDs in fixtures


- IES LM-80-15: Measuring Luminous Flux and Color Maintenance of LED Packages, Arrays and Modules
 - LED current regulated
 - Measure LED case temperature T_s
 - Measure for at least 6 000 hours, test every 1000 hours
 - Preferably measure 10 000 hours
- IES TM-21-11: Projecting Long Term Lumen Maintenance of LED Light Sources
 - Describes exponential fit to the data from the test results
 - Presented as L70B50 lifetime values
 - Lifetime value is limited to maximum 6x test duration

Lifetime of LEDs in fixtures

9

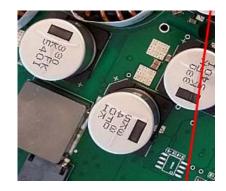
Lifetime value limited by TM-21 rule!

.

Lifetime test for LEDs in fixtures

- The published LED data is used for evaluating LED lifetime in specific fixtures
- Test condition:
 - 100% intensity at 6.6A
 - inset in base in sand +55C
 - elevated standing in heat chamber +55C
 - stabilized for 4 hours
 - Ts measured

White LEDs	Elevated Runway Edge	Inset Runway Centreline
LED T _s	83 °C	101 °C
Projected L ₇₀	246 000 h	100 000 h
Reported L ₇₀	> 60 000 h	> 42 000 h


Reported L₇₀ lifetime for fixtures is limited by the test duration in the LM-80 test performed by the LED manufactures

Lifetime Electronics

- No observed "end-of-life" electronics parts
- The electrolytic capacitors are the components that most probably will reach its estimated lifetime the first.
- When the capacitors degrade, the current to LEDs will remain as specified
- Life time is dependent on component temperature, which is dependent on
 - Intensity step when used
 - Ambient temperature
 - Fixture power

Life time of capacitors is also dependent on

- Capacitor quality
- Temperature rating
- Equivalent series resistance

, **.** 11

(°C) (4) ① 105°C1000h 120-(2) 105°C2000h (3) 105°C5000h (4) 125℃C2000h 110-(2)3 100-90-**Capacitor** ambient 80temperature 70-60-50-40-200,000 Hour 2,000 5,000 10.000 100,000 20,000 50,000 24hours (h) (Hour)

• If temperature drops from 85°C to 75°C

Lifetime Electronics

• Lifetime 20 000 hours increase to 40 000 hours

Lifetime of electronics and LEDs

- The lifetime of electronics and LEDs is dependent on
 - Temperature of the compenents
 - Drive current, i.e. operational use of intensity steps
- Temperatures in electronics an LEDs are dependent on
 - Annual averge temperature where the fixture is installed
 - Design of fixture
 - Efficient optical design gives low power usage for LEDs
 - Efficiency in electronics, low idle wattage, LED driver efficiency
 - Heat conduction within fixture
 - Heat conduction from fixture to base and surrounding air

W ?

The power usage of a fixture is a clue to evaluate the optical, electrical and thermal design

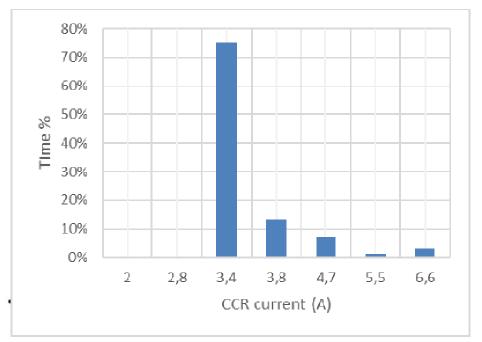
14

. . . .

General maintenance

- Visual inspection every day
- Torque check annualy
- CO₂ dry ice to clean prisms
 - 4 times / year

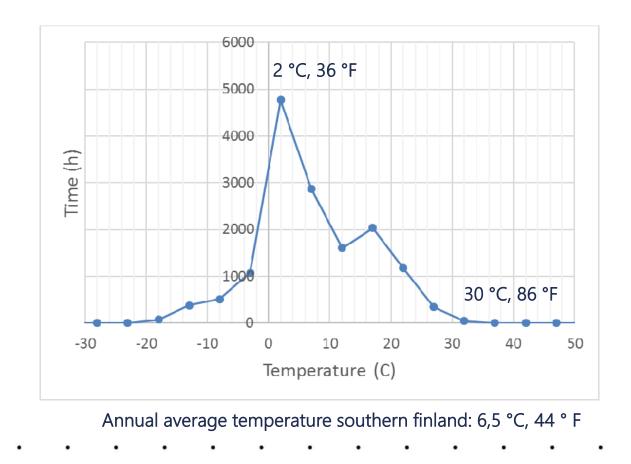
Winter maintenance


- Snowploughs and brushes
- Chemicals for ice removal
 - Formiate Acetate
 - Type I and II propyleneglycol will also end up on the runways

- Test with one RCL and one TDZ
- Installed

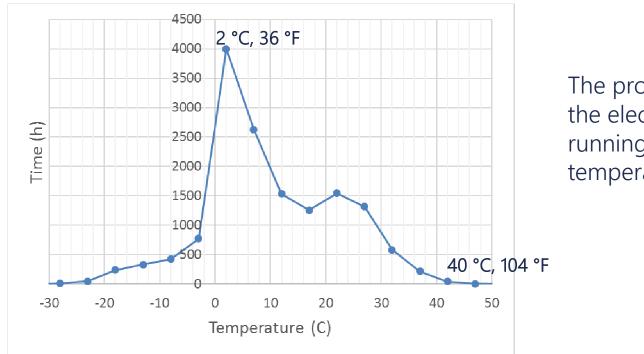
.

- November 2013 to
- September 2016, 1 063 days
- Operational time
 - RCL: 14 976 hours, 624 days, 59%
 - TDZ: 3 667 hours, 153 days, 14%



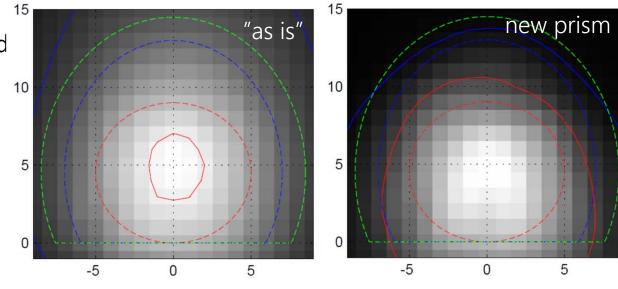
FAA	EB67D

CCR (I)	Light Int
2,8	0,4%
3,4	1,6%
4,1	5,6%
4,8	14,8%
5,5	34,0%
6,6	100,0%


• Temperature on LEDboard, RCL White side

At CCR 3.4 A LEDpower about RCL W 0.13W

The LEDS are running at very cold temperatures


• Temperature measurements on processor inside fixture, RCL white side

The processor and the electrinics are running at low temperatures

Annual average temperature southern finland: 6,5 °C, 44 ° F

- Prisms were scratched
- Light intensities
 - Measured "as is"
 - Changed prisms

	MBA RCL W	MBA TDZ W	MBA RCL R
Req	5000	5000	750
"as is"	2215	3072	278
new prism	7184	6622	1088

Runway centreline White, 15m spacing

By changing prisms, the fixtures are as good as new

Sapphire coated prisms

- Helsinki experience from inset halogen threshold fixtures, test 2011-2014
 - more durable than regular prisms
 - not economically for incandescent
- Rovaniemi, Finland airport recently installed LED RCL and TDZ with reinforced prisms
 - Evaluation to be done Spring 2017
- Stockholm experience
 - Using reinforced prisms on taxiways since 2010
 - Last much longer

Experience of heaters

Inset fixtures

Helsinki, Canada, Stockholm

- No heaters needed Oslo
- Heaters needed

Elevated fixtures

Helsinki, Canada

- No heaters needed Chicago, Columbus
- Heaters needed

The need for heaters is depending on location, type of snow, maintenance equipment and maintenance procedures

Airfield managers expectations on lifetime

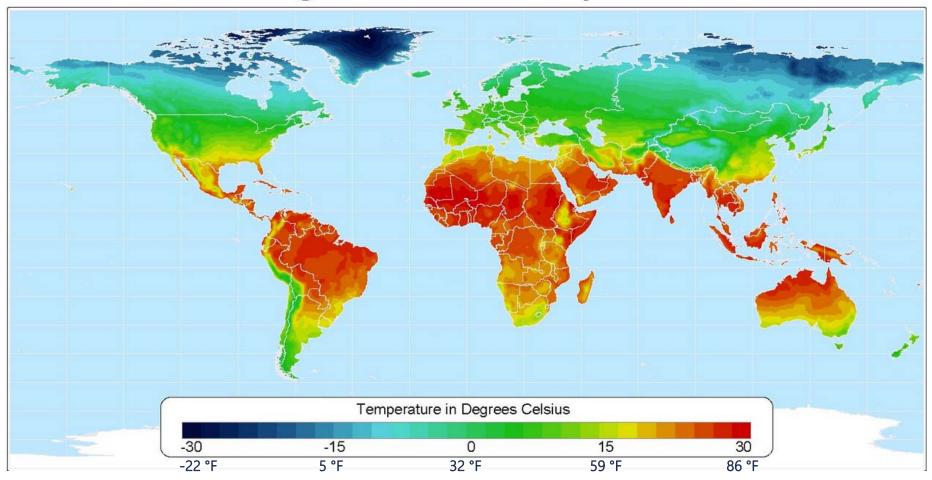
Helsinki

- Will use reinforced prisms
- Use the LEDs to the bitter end

Brussels

• At least 6 years in field

Lyon


• At least 10 years in field

Stockholm

- Using reinforced prisms on taxiway
- Will use reinforced prisms on RWY
- At least 12 years in field

Average Annual Temperature

In low and moderate temperatures locations

• Lifetime of LEDs, optics and electronics will be the same or longer than for the mechanical parts

In hot locations

- Heat Chamber tests show very good lifetime for LEDs
- More long term field data is needed from installed fixtures

Conclusions

- Keep the watertightness intact
- Clean prisms
- Perform photometric tests
 At least every second year
- Change prisms when needed

