In-Pavement Light Fixture Bolts

Presented to: IES ALC Government Contacts Mtg. By: Joseph Breen, P.E. Date: October 3, 2018

In-Pavement Light Fixtures Bolts

- FAA Engineering Brief (EB) 83A, In-Pavement Light Fixture Bolts.
- In-Pavement Light Fixture Installation, Instrumentation, and Testing in NAPTF.
- Planned Horizontal Shear Force Testing to Evaluate Coatings Applied to Light Base and Spacer Ring Faying Surfaces.

FAA Engineering Brief 83A

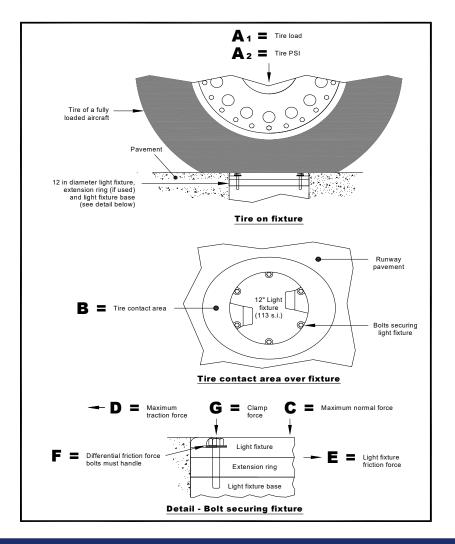
- FAA EB 83A Developed to Include the Following Criteria:
- Selection of Bolt Grades and Installation Torques/Clamping Forces Based on Resisting Governing Commercial Aircraft Maximum Wheel Loads/Traction Forces at Individual Airports.
- Light Fixture/Base Faying Surfaces Treated as Friction Connections Based on Governing Aircraft Wheel Loads and Associated Traction Forces.
- Joint Slippage Influenced By Quantity/Overall Thickness of Spacer Rings and Coating of Faying Surfaces.
- Utilization of Bolt Tension Calibrator (Skidmore-Wilhelm or Equivalent) with Assembly Mock-Ups to Accurately Determine Bolt Installation Torques Based on Required Clamping Forces.

Engineering Brief 83A Highlights

- EB83A Applies to Bolts Connecting Light Fixtures to L-868 Light Bases.
- Bolts Shall be Capable of Generating a Minimum Clamping Force Capable of Resisting Traction Forces Generated by Governing Commercial Aircraft at Individual Airports.
- Bolt Clamping Forces Limited to 75% of Bolt Material Proof Load (Approximately 85% of Yield Strength).
- Maximum Governing Commercial Aircraft Determined to be A380-800 Requiring a Bolt Clamping Force of 4,900 Pounds/Bolt.
- Light Fixture Manufacturers Must be Consulted to Confirm that Their Light Fixtures can be Safely Installed with Bolt Clamping Forces Exceeding Manufacturer's Published Guidance.

Engineering Brief 83A Highlights

- Recommended Industry Best Practices that Bolting System Mock-Up be Tested Utilizing a Bolt Tension Calibrator (Skidmore-Wilhelm or Equal) and Calibrated Torque Wrench to Establish the Bolt Installation Torque Based on Required Clamping Force.
- Testing with Bolt Tension Calibrator will Account for Bolt Lubricant or Coating, and Mechanical Properties of Materials in Grip (Light Fixtures, Bases, Locking Washers (if Used), and Bolts).


Engineering Brief 83A Highlights

- Recommended Industry Best Practice for Future Light Fixture Modifications to Include No More Than 3 Spacer Rings (Including Flange Ring) with L-868 Light Cans.
- Spacer Ring Stacks with L-868 Light Cans Shall Not Exceed 2 3/16" In Height.
- Extension Cans Shall be Used in Installations Where Spacer Ring Height Requirement Exceeds 2 3/16".
- Manufacturers of Two-Part Locking Washers Must Demonstrate Performance in Vibration Testing per FAA AC 150/5345-46.
- Changes to Applicable FAA Advisory Circulars to Reflect Changes in EB 83A.

Aircraft Forces Acting on In-Pavement Light Fixtures

Bolt Clamping Force/Torque Calculation Example (A380-800 Aircraft)

- A1: Tire Load = 59,400 pounds
- A2: Tire Pressure = 218 psi
- B: Tire Contact Area = A1 / A2 = 272.5 inches square
- C: Maximum Normal Force on the in-pavement light fixture = A1 × (113/B) = 24,632 pounds

(Contact Area of 12" Diameter Light Fixture Taken as 113 in. sq.)

- D: Traction Force imparted to the light fixture = C × 0.8 = 19,706 pounds
- E: Resisting Frictional Force between the light fixture and light base = C × 0.37 = 9,114 pounds

(Static Friction Coefficient at Faying Surfaces Taken as 0.37)

- F: Differential Force the in-pavement light fixture bolts must handle = D – E = 10,592 pounds
- G: Clamp Force = (F/6)/0.37 = 4,771 pounds

Bolt Clamping Force/Torque Calculation Example

- T = K × 0.375 × G = 322 inch-pounds
- = 26.8 foot-pounds
- Friction Coefficient (K) Assumed to be 0.18 for Coated SAE J429 Grade 5 Bolt based on FAA Testing.

(Actual Airport Bolt Installations Shall Utilize Bolt Tension Calibrator with Assembly Mock Ups to Develop Accurate Torque-Tension Relationship.)

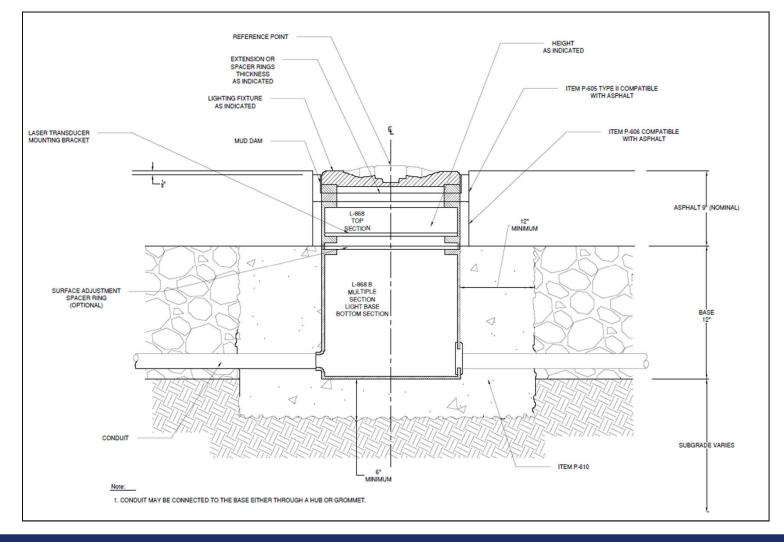
- The Grade of the 3/8" bolt selected must be able to withstand 4,771 pounds of clamp force and a torque of 322 inch-pounds or 26.8 foot-pounds.
- A 3/8" SAE J429 Grade 5 Bolt has a Rated Clamping Force of 4,941 Pounds (75% Proof Load).

Testing of Instrumented, Installed In-Pavement Light Fixtures in the FAA National Airport Pavement Test Facility (NAPTF)

The National Airport Pavement Test Vehicle

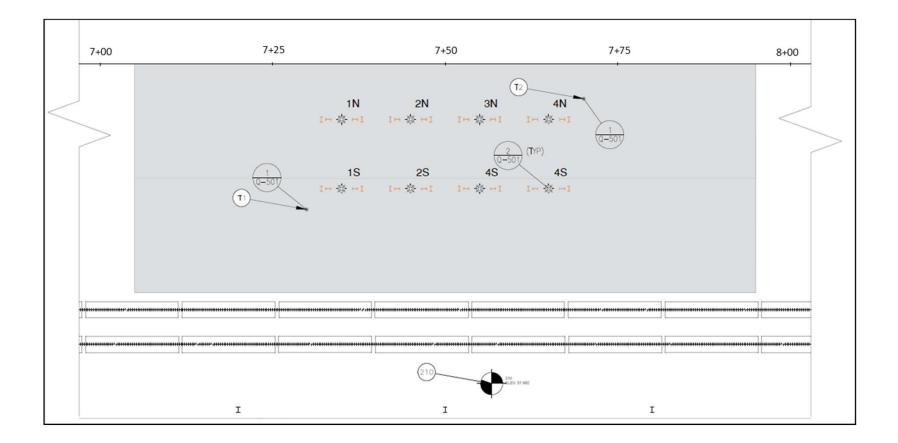
Light Fixture/Instrumentation Arrangement

- Eight Instrumented Light Fixture Assemblies will be Installed in an Asphalt Pavement Test Section.
- Light Fixture Instrumentation to Include the Following:
 - Strain Gauges on Light Fixtures, Light Base Top Sections, and Fixture Bolts
 - Tri-Axial Accelerometers on Light Fixtures
 - Laser Transducers to Measure Horizontal/Vertical Movement Between Light Fixtures and Bases
- Light Fixture Assemblies will be Installed in Two Rows of Four Spaced Laterally and Longitudinally on 10-Foot Centers
- Strain Gauges will be Installed in the Asphalt Pavement Around Each Light Fixture to Measure Longitudinal and Transverse Strain in Pavement



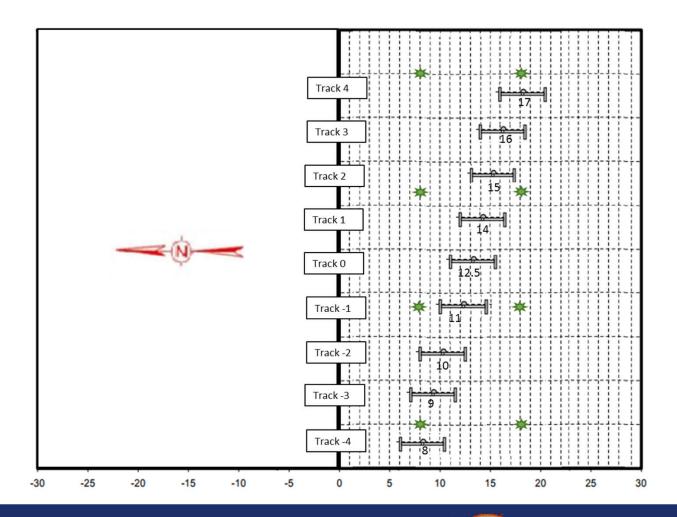
Light Fixture/Instrumentation Arrangement

- Light Fixture Assemblies will be Installed with the Following 4 Configurations with Associated Mounting Bolts and Washers:
 - Two Assemblies each with 12" Base, 8 ¼" Top Section, Flange Ring, and Light Fixture.
 - Two Assemblies each with 12" Base, 2 ¼" Top Section, 3
 Spacer Rings (2" Each), Flange Ring, and Light Fixture.
 - Two Assemblies each with 12" Base, 5 ¼" Top Section, 3
 Spacer Rings (1" Each), Flange Ring, and Light Fixture.
 - Two Assemblies each with 12" Base, 5 ¼" Top Section, 3"
 Extension, Flange Ring, and Light Fixture.



Light Fixture Assembly Installation

Location of Pavement Strain Gauges in Test Section



Planned Testing in NAPTF

- NAPTF Test Vehicle will be used for Applying Incrementally Increasing Wheel Loads (67,000 Pounds per Wheel Maximum) at Varying Distances from the Light Fixture Assemblies.
- NAPTF Test Vehicle Will be Used to Apply Static and Dynamic Loading on Test Section in 1D (2 Wheel), 2D (4 Wheel), and 3D (6 Wheel) Gear Configurations.
- Construction of Asphalt Pavement Test Section and Installation of Instrumented Light Fixture Assemblies Scheduled to Begin in October 2018.
- Testing Planned for January, 2019

Lateral Wander Positions of Test Vehicle 3D (6 Wheel) Gear Configuration

Horizontal Shear Force Testing for Coating Evaluation

- Testing to be Conducted at Intertek in Accordance with FAA AC 150/5345-46.
- Testing to Evaluate Influences of Coatings Applied to Light Base and Spacer Ring Faying Surfaces on Static Friction Coefficients.
- Coatings Intended to Reduce Risk of Horizontal Movement at Light Fixture/Base Interface and Resulting Bolt Fatigue Failures.
- Coatings to have Minimal Impact on Installations and Manufacturing Tolerances.
- Tinius Olsen Machine Used to Incrementally Apply Horizontal Shear Forces at Light Fixture/Base Interfaces to Initiate Joint Slippage.
- Digital Dial Indicators Used to Measure Joint Slippage.

Horizontal Shear Force Testing for Coating Evaluation

- Testing to be Conducted Utilizing a Variety of Coatings on the Faying Surfaces of Light Fixture Bases and Spacer Rings.
- Evaluate Influences of Varying Quantities and Thicknesses of Spacer Rings up to 2 3/16" Combined.
- Objective to Assess How Coatings at Faying Surfaces will Influence Static Friction Coefficient.
- Testing Planned for Early in 2019.

Questions?

