Electrical Distribution for Photovoltaic Panels

> IES Aviation Lighting Seminar New Jersey – 2010

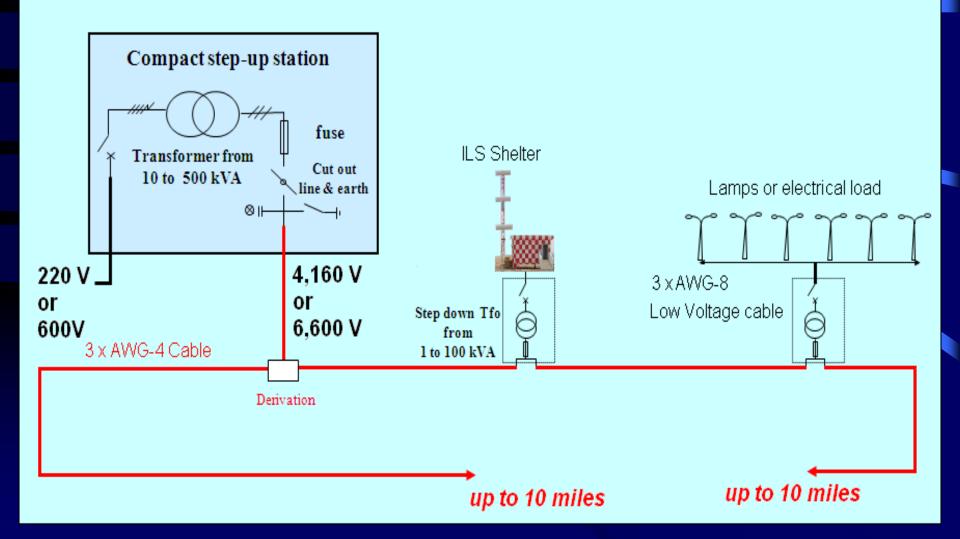
Gil DAVER - AUGIER® - FRANCE

Oct. 2010 (GD)

- 1. Presentation
- 2. What's the problem
- 3. Some MV examples

- 4. Photovoltaic solar production
- 5. Solar farms in Airport fields
- 6. Current discussion in Airports

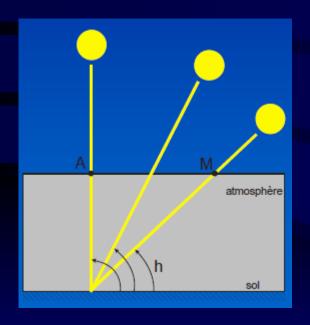
"Energy Distribution" in AIRPORT fields, & the specific application for **Photovoltaic panels**


Energy distribution from 600 V to 4,160 V (up to 6,600 V) (Voltages are fonction of countries and local standards) <u>Typical applications:</u>

- ILS, nav. aids, weather stations, vertical signs, ...
- Lighting of car parks and access roads to terminals
- Lighting of Apron (aircraft parks)
- FUTURE : Power from Photovoltaic panels

2. What's the problem?

3. Some MV examples



4.1. Photovoltaic Solar production

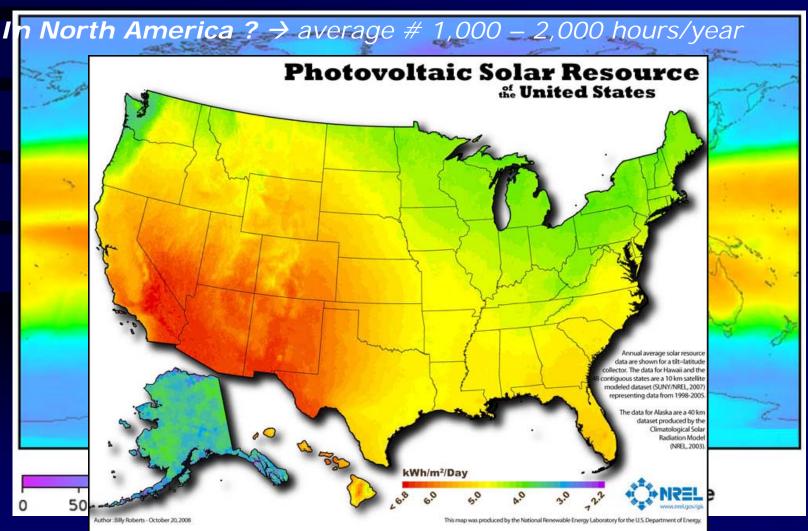
Solar energy & Atmosphere:

- Solar power is 1,637 W/m² OUTSIDE ATMOSPHERE
- \rightarrow only 1,000 W/m² INSIDE ATMOSPHERE with sun at its zenith

INFLUENCE of CLOUDS

- 100 500 W/m² with some clouds
- < 50 W/m² for bad weather

EQUIVALENT SUN HOURS


Calculation of an average (Wh/m²/day):

- Geographic position,
- Month of the year,
- Direction (South, South-East, ...
- Tilting position

4.2 Solar farms Sun reflexion

Where are the best "sun zones" in the world?

4.3. Photovoltaic Solar production

Photovoltaic cells & panels:

Photovoltaic technologies:

- Cristallin silicon Mono or POLY (less efficient \rightarrow better ratio W/US\$)
- Thin film solar cells Micro-cristallin, CdTe, GICS, Amorphous (50% less efficient but US\$/m² better → 2 times more space)

Power from photovoltaic panels:

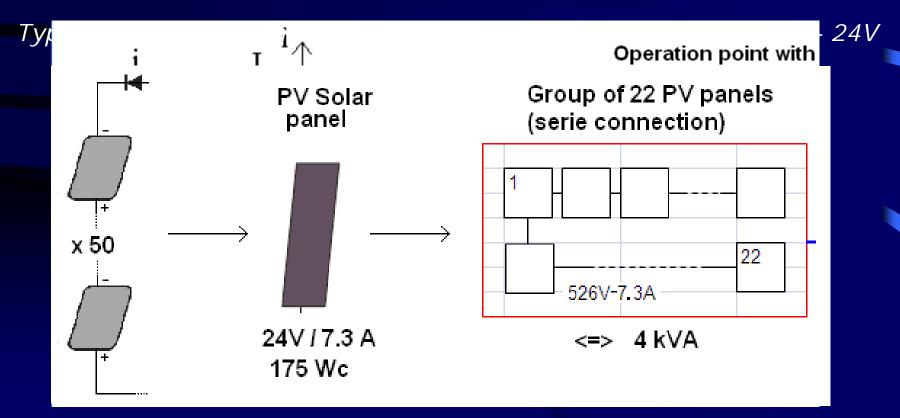
- Sun gives # 1 kW / m² \rightarrow Cells efficiency: 10 20% \rightarrow # 100 Wp/m²
- Production from 0.5 (California) to 1 kWh/m²/day (African sahel desert)

Cost of PV solar KW:

Price: 5 – 10 US\$/Wp for different types of cells

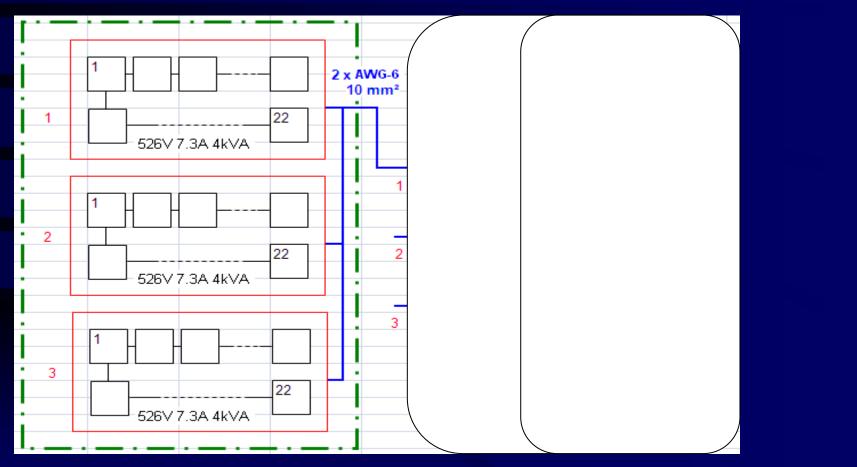
→500 – 1,000 US\$/m²

Average of equivalent sun hours: Madrid # 1,400 h/y \rightarrow « USA »


4.4. Photovoltaic Solar production

Electrical protections:

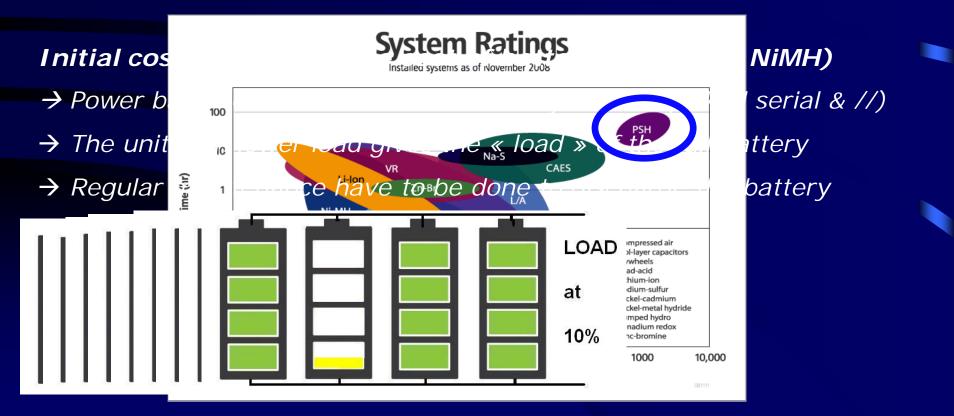
Photovoltaic panel output:


- Open circuit on PV panel output \rightarrow MAX of VOLTAGE at the output
- → NECESSARY to short circuit the PV panel output (people safety !)

4.5. Photovoltaic Solar production

Electrical distribution & PV cells failure:

4. Serie distribution (worse in parallel distribution)
If one PV cell is out, all group will follow → Power rating falls down !!!


4.6. Photovoltaic Solar production

Batteries storage or Water pumping ? Interes of « Water Pumping » for POWER suppliers

 \rightarrow Storage of the daily energy for the night with a good efficiency & cost

 \rightarrow Airport has no reason to store the energy in costly batteries

4.7. Photovoltaic Solar production

STANDARD DISTRIBUTION in SQUARE FIELDS

Targets for the energy collection from PV panels:

Reducing the financial investment

Reducing the operation costs

Increasing the efficiency (for a quicker money feedback) Increasing the MTBF (with strong outdoor solutions) Reducing the MTTR (with an efficient monitoring system)

95% of the farms use DC distribution

4.8 Photovoltaic Solar Standard distribution

Electricity distribution of **DC current** up to the HV substations

Photopolitaic Banefs **Revisionels group of units** - Serial / Part and the selection of the second se

converterspanels' uni gears, transfallagesfroi HV substatienfrent froi 5 to 2 MW

DC

SN

ins

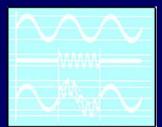
fro

High Voltage cabling to the main substrates as the substrates of t

4.9 Photovoltaic Solar Long distance site (1)

4.10 Photovoltaic Solar Long distance site (2)

Advantages of the AC current distribution

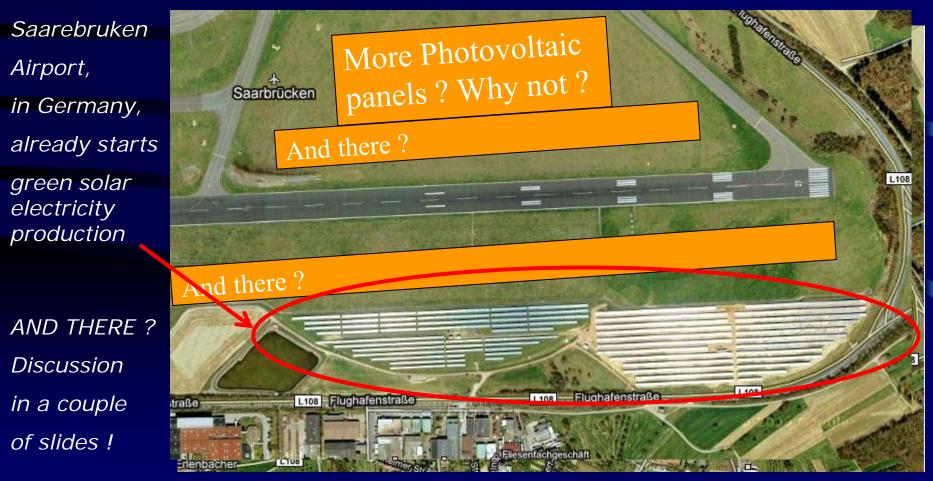

- Cabling (DC & AC Low Voltage and AC 4.2 or 6.6 kV)
 - Smaller cross sections and length of cables
 - Reduce « copper » losses in thicker cables

- Substations :

- Reduce the number or disappear !
- Suppression of some indirect costs.

- Maintenance :

- Increase the safety of operation
- Separated in smaller groups, securized by earthing connection
- Monitoring & remote control:
 - By Power Line Carrier: NO separated network
 - Information in the main substation (& GSM ?)


4.11 Examples of field buriable substations

5.1 Solar farms in Airport fields

European airports already develops solar PV farms

Photovoltaic panels on top of buildings, car parks but not only !

5.2 Specific application of Solar PV in airports

Questions:

SOLAR FARM < 0.5 MW at more than 0.5 mile from substation

LONG instead of square fields?

ELEC. SAFETY in solar panels

SAFETY of firemen & passengers

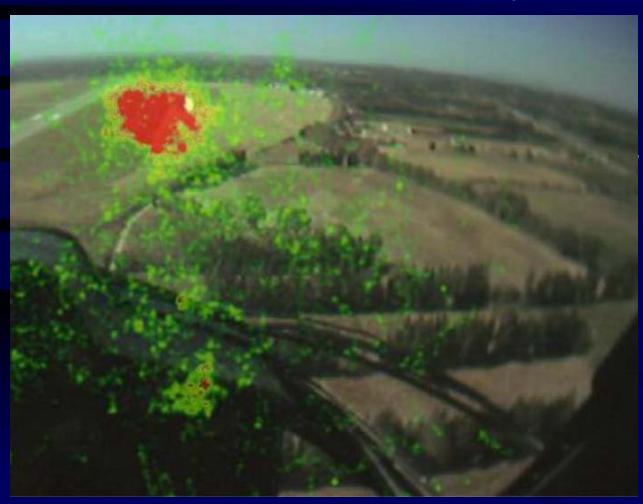
SUN REFLEXION on the panels?

Answers:

MV NETWORK 4,160 (or 6,600 V) behind a step up transformer

See distribution in 4,160 V AC « Long distance distribution (1) »

Output short circuit if open circuit detected


See last page « Crash situation »

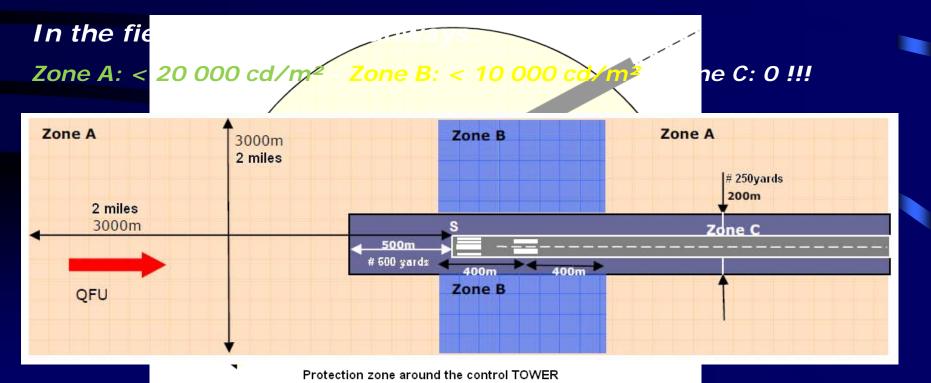
New generation of glass with low level of reflexion (St Gobain, API ...)

Europ CIVIL AVIATIONS position? Successfull tests with aircraft pilotsSee the 2 following slides> French info note dated 31 Aug 10

5.3 Solar farms Sun reflexion

Tests & results in a French airport :

on airport specific panels with glass treatment


5.4 Solar farms French Civil Aviation

DGAC – Direction Générale de l'Aviation Civile → French FAA ...

Info. note « Agreement of photovoltaic projects around airport » (Edition 2, dated 31 August 2010)

See website : <u>http://www.developpement-durable.gouv.fr</u>

Zone < 2 miles around the Tower \rightarrow Luminous reflexion < 20 000 cd/m²

6.1 Current discussion around airports

2 visions in function of the traffic of the airports:

1) Lower traffic airport (< 100 000 passengers per year):

- Looking for new business (e.a. renting the field for solar farms)
- Electrical maintenance team has time to optimize the solar production by cleaning panels and checking daily production
- « Green » balance between airport consume & production

2) Higher traffic airport (> 500 000 passengers per year):

- *Ready for PV solar production on building and car parks*
- Against PV panels in the field due to many aircrafts traffic (It's difficult to maintain the AGL equipment ! Please don't add PV !)
- « Green » solar prodution: difficulties to reach airport consume ...

6.2 Current discussion around airports

What to do with 1\$ per passenger ticket ?

30 international airports:

→ Traffic from 33 to 90 M passengers per year

AN EXAMPLE: Roofs & Pavement at the **Atlanta Hartsfield-Jackson Airport** (**ATL**) is estimated at >70,500,000 square feet. If 25% can be utilized for PV, ATL can install a **1.50 GW "solar".**

With \$1 surcharge, ATL would collect \$90M annually. If 1 "KW PV" is # \$9,000 → **120 MW PV installed in 10 years**.

During this 10 year period, Total accumulated PV capacity **could exceed the peak load of ATL**.

6.3 CRASH situation with Solar panels

RISKS:

Aircraft leaving « slowly » the runway

Aircraft leaving « quickly » the runway

Aircraft stopped inside the farm < 1% of chance but ...

Electrical protections for airports firemen

SOLUTIONS:

Aircraft stopped inside the 150 m (164 yard) band from runway axis

Aircraft crossing the solar farm PV panels with frangible supports PV panels will limit speed of aircraft

PV panels will have to fall down:

- Electromagnetic relay on supports
- PV panels laid on a concrete floor !

Open circuit detection in each panel => PV panel output = short circuit + Remote control of short-circuit

... Thank you for your attention Any question ?

Gil DAVER, Export manager AUGIER, your energy <u>gil.daver@augier.com</u> Phone +33 4 9208 6227 Cell. +33 6 68 04 28 96

