IES Government Contacts Subcommittee

Runway Status Lights

Presented by: Claude Jones, RWSL Program

Manager

Date: April 19, 2011

Background

- National Transportation Safety Board's "Most Wanted" Transportation Safety Improvements (Aviation) Stop Runway Incursions/Ground Collisions of Aircraft
 - Action needed by the FAA (added to the list in 2001)
 - "Implement a safety system for ground movement that will ensure the safe movement of airplanes on the ground and provides direct warning capability to the flight crews"
- RWSL technology was developed and evaluated through the Runway Incursion Reduction Program (RIRP) to assess its performance and suitability for integration at high volume airports
- Successful operational evaluations at DFW, SAN, LAX and BOS airports (2005present) established initial baseline of capability for NAS implementation
- The RWSL Program received approval to deploy RWSL to 23 airports on January 22, 2010
- The FAA will own, operate and maintain the entire RWSL system including the field lighting

RWSL Airports

System Description

RWSL integrates airport lighting equipment with approach and surface surveillance systems to provide a visual signal to pilots and vehicle operators indicating that it is unsafe to enter, cross, or begin takeoff on a runway

- Designed to reduce the number of runway incursions without interfering with normal and safe airport operations
- Automatic, passive, system that provides an added layer of safety for the runway environment
- Increases situational awareness by displaying critical time-sensitive safety status information directly to pilots and vehicle operators
- Provides an immediate indication of the existence or forecast of a conflict
- Indicates runway status only; does not indicate clearance

Program Implementation Status

- Operational Test & Evaluation (OT&E) conducted at the RWSL Production Key Site, Orlando International Airport (MCO)
- OT&E will be followed by Independent Operational Analysis (IOA)*
- An In Service Decision is expected late this summer
- Construction and installation is in progress at 12 sites: Houston George Bush (near completion), Phoenix (near completion), Minneapolis, Las Vegas, Washington Dulles, Charlotte, Ft Lauderdale, New York La Guardia, Chicago, Seattle, New York JFK, Detroit
- Waterfall Schedule follows

^{*} Formerly Independent Operational Test & Evaluation (IOT&E)

RWSL Waterfall

#	ID	Region	Airport	ORD
1	MCO	ASO	Orlando International Airport	Aug-11
2	PHX	ASW	Phoenix Sky Harbor International Airport	Dec-11
3	IAH	ASW	George Bush Intercontinental Airport	Jan-12
4	BWI	AEA	Baltimore-Washington International Airport	Mar-12
5	LAS	AWP	Las Vegas McCarran International Airport	Mar-12
6	CLT	ASO	Charlotte Douglas International Airport	May-12
7	LAX	AWP	Los Angeles International Airport	Sep-12
8	ATL	ASO	Hartsfield-Jackson Atlanta International Airport	Jan-13
9	SEA	ANM	Seattle-Tacoma International Airport	Apr-13
10	ORD	AGL	Chicago O'Hare International Airport	May-13
11	IAD	AEA	Washington Dulles International Airport	May-13
12	LGA	AEA	LaGuardia Airport	Jun-13
13	JFK	AEA	John F. Kennedy International Airport	Apr-14
14	DEN	ANM	Denver International Airport	May-14
15	MSP	AGL	Minneapolis-St. Paul International Airport	May-14
16	EWR	AEA	Newark International Airport	Jun-14
17	DTW	AGL	Detroit Metro Wayne County Airport	Aug-14
18	PHL	AEA	Philadelphia International Airport	Oct-14
19	DFW	ASW	Dallas/Ft. Worth International Airport	Dec-14
20	FLL	ASO	Ft. Lauderdale/Hollywood Airport	Mar-15
21	BOS	ANE	Boston Logan International Airport	Jul-15
22	SAN	AWP	San Diego International Airport	Oct-15
23	SFO	AWP	San Francisco International Airport	Dec-15
S1	PSF		Oklahoma City - NAS Engineering Program Support Facility (PSF)	N/A
S2	ILS		Oklahoma City - FAA Logistics Center/Depot	N/A
S3	ACA		Oklahoma City - FAA Academy	N/A

Lighting Issues

- The use of Commercial Off the Shelf (COTS) equipment (constant current regulators (CCRs), master light controllers (MLCs)) has several implementation difficulties. These include:
 - a) Non-compliance with stricter requirements in FAA specifications and orders
 - b) Redevelopment to comply with life cycle maintenance requirements
 - c) Equipment is proprietary; documentation difficult to obtain from vendors

Lighting Issues (continued)

- Take-off Hold Lights (THL) and Runway Entrance Lights (REL) Light-Emitting Diode (LED) light fixtures have been certified
- LEDs will be installed at all RWSL airports except some of the four prototype airports

Back Up

Runway Entrance Lights (RELs) and Takeoff Hold Lights Arrays (THLs)

Takeoff Hold Lights (THLs) L-850T

6' on either side of RW CL lights, spaced 100'
for 1500' – 32 lights/array
Start 375' from the runway threshold

Runway Entrance Lights (RELs) L-852S
6 lights minimum per REL array (Includes one on Runway center line)

Conceptual Diagram of the RWSL System

Orlando (MCO) Site Design

Physical Architecture

Shelter Component (Shelter)

- Up to 8 Shelters per airport
- 12 x 26
- HVAC options, fan/vent, power options, plus others.
- 2100, Safety and Work/Egress Clearances

System Overview: Airfield Shelter

RWSL FLS Shelter at 9300 Taxiway Road

RWSL Field Lighting System Shelter

System Overview: MCO Airfield Shelter

MCO

Remote Maintenance Terminal Cabinet (RMTC) in shelter

Constant Current Regulator (Shelter)

- Maintains a constant current level throughout one series circuit loop.
- The current level is determined by the light intensity setting.
- ACE Advanced Control Equipment (ACE)
- Up to 4 CCR per Shelter

System Overview: MCO Airfield Shelter MCO

Master Light Controller (MLC) (Shelter)

- Receives light commands from the LC and sends communication signals to the individual light controllers.
- provide illuminate/extinguish control capability for the Individual Light Controllers on one circuit.
- Power line carrier modem
- ADB Brite III Master
- Custom Rack mounted above CCR

Power Conditioner (Shelter)

- AC surge protection
- Transient protection
- Harmonic protection
- Protects all equipment in the Shelter except CCR and MLC

Remote Maintenance Terminal (Shelter)

- RMT Cabinet (RMTC)
- Computer
- Standard KVM
- Media Converters
- Fiber Equipment
- Power Distribution
- Power Conditioner

Power and Comms (Shelter)

Power

- Disconnect Switch
- 480V Input Panel
- Utility Transformer
- Distribution Panel
- High Voltage Output Cabinet
- Series Cut-out (SCO) Power output box

Communications

- Fiber Demarc Corning LANscape P/N WCH-04P
- Kill Switch Relay
- Cable Tray

Shelter Install Process

- Procured through MMAC Shelter Program
 - Current shelter contract is with Dupont Building, Inc. located in Sweet Lake, LA.
- Define Requirements 1month
 - Shelter drawings returned to MMAC with Mfr. Install specifications
 - HVAC requirements
 - Wind loading
 - Incorporation of the CCR mount plate
 - Exterior/interior finishes and coatings
 - Structural building elements
- Service Order FAA PMO Orders FLS Shelter 1 month
 - Scope, Contents, Site, Schedule
- MMAC Order MMAC Places order to vendor- 10 weeks
- Shelter Received at MMAC Placed into MMAC Inventory 2 weeks
- Populate Shelter 6 weeks
 - Install
 - Test
- Ship to site 2 weeks
- Arrive on site 1 day
 - Need 7460 for crane
 - Install on FLS pad

Isolation Transformer (Field)

- Isolates the light fixture from the high voltage primary side of the series circuit.
- Power from CCR.
- Enhances safety for maintenance personnel.

Individual Light Controller (ILC) (Field)

- Receives the command signals sent from the MLC over the series circuit.
- Illuminates and extinguishes the light fixture accordingly.
- Monitors the diagnostics of the light fixture.
- Unique Serial Numbers.
- Requires specific repair/replace logging at Maintenance
 Terminal or Remote Maintenance Terminal.
- Addressable, Low-Power, RF carrier-current modem

Light Fixtures (Field)

- THL fixtures conform to FAA AC 150/5345-46D Type L-850T.
- REL fixtures conform to FAA AC 150/5345-46D Type L-852S.
- LED lights are to be used.
- Key Site (Orlando) will be installed with Incandescent lights and later retrofitted with LED.

Light Can (Field)

- 12" diameter x 24" height
- L-868
- Hot-dip galvanized
- 1" drain
- 6 bolts
- Plate Installed if fixture unavailable
- Submerged

L-868 Installation Configuration

Major Milestones Complete to Date

- Awarded contract to Sensis Corporation on October 16, 2008
- Conducted Preliminary Design Review at Sensis on March 2-6, 2009
- Conducted Critical Design Review at Sensis on July 21 24, 2009
- Conducted Factory Acceptance Test (FAT) on February 10, 2010
- Delivered system to Key Site -- Orlando International Airport (MCO) on February 19, 2010
- Completed Final Qualification Test (FQT) on August 4, 2010
- Conducted Site Acceptance Test (SAT) at MCO on August 4 16, 2010, however system did not pass System Stability Test
- SAT Regression Test event completed January 26

System Description

- The RWSL system integrates approach and surface surveillance systems with airport lighting equipment to provide a visual signal to pilots and vehicle operators indicating that it is unsafe to enter/cross or begin takeoff on runway
- The system is fully automated based on inputs from surface and terminal surveillance systems
- Airport surveillance sensor inputs are processed through light control logic that commands in-pavement lights to illuminate red when there is traffic on or approaching the runway
 - Runway Entrance Lights (REL) provide a signal to aircraft crossing or entering runway from intersecting taxiway
 - Takeoff Hold Lights (THL) provide signal to aircraft in position for takeoff

Final Product

• REL – Runway Entrance Lights

- RELs are illuminated when a aircraft of vehicle is traveling towards or on a runway at a certain speed, acceleration, and altitude.
- RELs are extinguished using anticipated separation (prior to actual taxiway clearance) to maintain current safe airport operations.

THL – Take-off Hold Lights

- THLs are illuminated when a there is both a aircraft in a Take Off Hold region that is aligned with the runway, and there is a aircraft or vehicle in front of it on the runway.
- THLs are extinguished when the aircraft or vehicle is projected to leave the runway, allowing the use of anticipated separation to maintain current safe airport operations.

Example of RELs

Example of THLs

