ORLANDO Airport: Energy Saving with Dimmers on high masts

IES Aviation Lighting Seminar Wilmington - North Carolina - 2011

Gil DAVER - AUGIER® - FRANCE

SUMMARY

- 1. Start up of this cost saving project
- 2. Installation of a dimmer, at GOAA site
- 3. Objectives
- 4. Current results
- 5. Upgrades
- 6. Conclusions

1. Start up of this COST SAVING PROJECT

IES - ALC 2010, in New Jersey Discussions on future RP-37!

→ Thanks to these seminars

1st meeting between:

Greater Orlando Airport Authority

Frank BARCZAK & Jeff PACE

& AUGIER - Gil DAVER

Discussion for a real test on high masts in Orlando airport

- * Augier to provides a dimmer 480V 3 phase
- * **GOAA install** dimmer for apron light and follow its operation during 6 months (summer 2011)

2.1 INSTALLATION of the DIMMER ORLANDO airport

Location at Orlando

« Corner » of the apron

Power supply of

2 high masts with 12 HPS

→ Total of 24 kW

New cabinet beside
The existing feeder pillar

2.2 INSTALLATION of the DIMMER ORLANDO airport

AUGIER constaints:

Upgrade of DIMMERS from 230 to 480V:

Development of an autotransformer 480/230V to keep existing electronics (2 years)

Supplied of 3 dimmers
9kVA between 2 phase
at 480V.

+ an Augier GSM modem

3.1 OBJECTIVES

REMINDER on DIMMERS operation on H.I.D. lamps

Starting from Vr = 480 VVr - 21% = 380 V

→Pr # 50% for HPS

Guidelines on the Application of Dimming to High Intensity Discharge Lamps *A NEMA Lighting Systems Division Document* (LSD 14-2002)

... generally not lower than 50 percent of rated lamp wattage."

3.2 OBJECTIVES

Current TECHNICAL RULES

150/5360-13

4/22/88

Table 4-1. General Lighting Requirements

Area	Foot-candles (LX) 2
Fences, gates, guard-shelters, building exteriors apron areas, associated equipment parking areas, building entrances, and exits.	5.0 (54.0)
Pedestrian entrances to aircraft operations area 1	2.0 (22.0) max.
General aircraft operations area 1	0.15 (1.6)
Dock Areas	10.0 (108.0)
Roadways	1.5 (16.0)

¹ FAA AC 107-1, Aviation Security-Airports.

² Measured at most remove points of areas involved, ±200 ft (60 m) 36 inches (91 cm) above ground; light target perpendicular to the direction of the light rays.

3.3 OBJECTIVES

Both TECHNICAL & FINANCIAL

- 1) Anticipating the new release of RP-37
- "Recommended Practice for Outdoor Lighting for the Airport Environment » to be published on 2012!
- 2) Checking the Robustness of the dimmer
- With the wonderfull weather of Orlando including electric storms, high temperatures and the salty & humid ambiant air ...
- 3) Users' interface for maintenance operations
- Connexion with a notebook to collect the states & parameters.
- 4) Cost saving with power price in Florida
- Real measurement of power consomption

4.1 CURRENT RESULTS

REAL & ECO 395 V	Input Vac	Current A	Power kW	Current A	Power kW	Saving %	
Phase B-C	472.7	22.6	6.0	17.5	4.7		a), 's I)

NOM. & ECO 380 V	Input Vac	Current A	Power kW	Current A	Power kW	Saving %
Phase B-A	480		6.24	14.8	4.1	32%

2) Real measurement inside the cabinet:

- Done with a power analyzer HIOKI 3196
- More than 20% of instant « cost saving » with rated voltage (395V)
- → Should be more than 30% with reduced voltage at 380V

4.2 CURRENT RESULTS

FINANCIAL ANALISIS

1) COST SAVINGS at GOAA:

- Local price of the airport lighting electricity = US\$ 0.0988 / kWh
- Annual consumption of this cabinet 48 kW is # US\$ 15,000
- Annual cost saving will be #25% → # US\$ 3,750.00

2) RETURN Of INVESTMENT:

- Indicative price of a 54 kVA dimmer# US\$ 28,000.00
- R.O.I. is # 7 years with this current price of electricity
- Less time if the power price continues to increase in Florida

5.1 UPGRADES

For a potential use by operation in Tower

1) Operation with the GSM Modem:

- Back to nominal voltage and light during cost sa
- By sending a SMS or a command from the SCA

2) Development of the range of DIMMERS:

- Adaptation of the Serie DIMMERS with only one comon auto-transformers
- Other North American voltages (347-600V, ...)

3) More cost saving using Astronomic clocks:

• Avoids maintenance cleaning on photocells & provides constant operation

5.2 UPGRADE

Remote control from ATC

Optimisation of the plateform lighting

- When no operation around an aircraft → decreasing light
- When an aircraft is landing → increasing light at its future position

Weather surprises!

In case of bad weather, that is very easy to have the light back to the RATED value

6.1 CONCLUSIONS

TECHNICAL

Technical issues:

- Compacto dimmers requires **external lightning arrestors** and to be installed **inside a cooled cabinet** despite the fact that they operated correctly during June without these protections.
- Augier after sales reactivity is correct (from France at this time).
- PC software allows good maintenance actions.

6.2 CONCLUSIONS

R.O.I. & CARBON Production saved

GREEN INFO		Lighting	Reduced	kVAh saved	Carbon balance
		ON	Power	per year	CO2 Tons (10 years)
Dimmer 1 phase	9 _{kVA}	4 200 h	3 000 h	13 500	12
Dimmer 3 phase	36 _{kVA}	4 200 h	3 000 h	54 000	49

CARBON production saved:

- Annual kVAh saved per year
- Carbon balance on a 10 years period
- 2 examples : 9 kVA / 36 kVA

6.3 CONCLUSIONS

→ Where cost savings are !

- 1) Apron
- (Manual part IV §13: 20 -> 10 lux)
- 2) Parks
- 3) Roads
- 4) Terminals

Marseille Provence

5 x 27 kVA (Apron)

1 x 36 kVA (Park)

Lyon St Exupery

1 x 27 kVA (Park)

Bâle - Mulhouse

2 x 9 kVA (Park)

Nice Cote d'Azur

 1×18 kVA (Access T1 + Park)

1 x 108 kVA (Accessive)

Toulouse - EADS zone

1 x 6 kVA (Apron)

... Thank you for your attention

Think about them !!!

Prepare the future of our children ...

GII DAVER, Export manager AUGIER, your energy

gil.daver@augier.com

Phone +33 4 9208 6227

Cell. +33 6 68 04 28 96

