Illuminating Engineering Society of North America **Aviation Lighting Committee**

DC POWERED LED TAXIWAY CENTERLINE LIGHTING SYSTEM: A CASE STUDY

Presented to:

2011 IES Aviation Lighting Committee **Fall Conference** Wilmington, North Carolina

E 5

by: **Frank Barczak** Jeff Pace © 2011

GREATER ORLANDO AVIATION AUTHORITY

2011-IESALC Wilmington, NC

North

ORLANDO INTERNATIONAL AIRPORT

WHY OIA?

HIGH GROUND WATER

HIGH TEMPERATURES & HUMIDITY

HEAVY AIRCRAFT

EXPOSED TO EMI

LIGHTNING

EXISTING CIRCUIT

- TFC1 CIRCUIT IS POWERED FROM THE 18L AIRFIELD LIGHTING VAULT.
- TFC1 CONSISTS OF 116 TAXIWAY CENTERLINE LED FIXTURES AND INCLUDES 22,000 FEET OF L-824 5 KV CABLE.

OIA DC CIRCUIT INSTALLATION TIME LINE

DATE	TIME	ACTION
PRIOR TO AUGUST 17		INSTALL POWER SUPPLY IN 18L VAULT AND PROVED INPUT POWER (240VAC) .
AUGUST 17 AND 18	2300-0500 HOURS	REMOVE EXISTING LED FIXTURES AND TRANSFORMERS, INSTALL NEW DC LED FIXTURES, REPAIR/REPLACE L-823 KITS AND BOLTS AS NEEDED, REPLACE 1 FIELD LIGHTNING ARRESTOR.
AUGUST 19	2300-0500 HOURS	COMPLETE NEW DC LED FIXTURE INSTALLATION, MAKE UP FIELD CONNECTIONS TO POWER SUPPLY AND TEST OPERATION.
AUGUST 20 THROUGH 22	2300-0500 HOURS	CONTINUE CIRCUIT BURN IN AND TESTING.
AUGUST 23	0800 HOURS	MOVE ALCS CONTROL AND MONITOR WIRING FROM EXISTING 6.6AMP CCR AND CONNECT TO NEW POWER SUPPLY AND BEGIN NORMAL OPERATION.

Date	Time	TFC1 Step	TFC2 Step	Inpu TFC1	t KW TFC2
9/29/11	18:48:45	0	1		.867
9/30/11	00:42:25	5	5	1.661	4.612
9/30/11	01:51:45	0	1		.867
9/30/11	06:53:38	0	0		
9/30/11	18:34:45	1	0	.088	
10/1/11	01:22:52	5	5	1.661	4.612
10/1/11	01:22:54	3	0	.101	
10/1/11	01:25:55	5	5	1.661	4.612
10/1/11	02:34:02	1	0	.088	
10/1/11	06:51:04	0	0		
10/1/11	18:55:42	1	0	.088	
10/2/11	06:50:25	0	0		

GOALS OF DC SYSTEM

- MAXIMIZE USE OF EXISTING ELECTRICAL INFRASTRUCTURE.
- MINIMUM SYSTEM COMPLEXITY.
- IMPROVED SAFETY.
- MAXIMUM ENERGY EFFICIENCY.
- SYSTEM RELIABILITY.

EXISTING INFRASTRUCTURE SIDE BY SIDE COMPARISON

CONVENTIONAL SERIES CIRCUIT INSTALLATION DC CIRCUIT

DC LED FIXTURE

STANDARD LED FIXTURE

PULSE WIDTH MODULATION (PWM):

- WIDELY USED RELIABLE MEANS OF CONTROLLING POWER TO A LOAD,
- RELIABLE, FIRST USED IN THE 1960'S,
- VERY EFFICIENT,
- USED IN COMPUTER POWER SUPPLIES,
- MOTOR SPEED CONTROLLERS,
- ELECTRIC STOVES, LAMP DIMMERS, ETC.

- THE POWER SUPPLY IS SMALL, 19" RACK MOUNT.
- MULTIPLE POWER SUPPLIES CAN BE INSTALLED IN THE SAME VOLUME AS A CONVENTIONAL CCR.
- 3-STEP OR 5-STEP.

Example APS Installation

19" rack mount enclosure for five power supplies
75.07" (190.7 cm) High x 21.3" (54.1 cm) Deep

WHAT THE FUTURE COULD HOLD

IMPROVED SAFETY

- THE MAXIMUM OUTPUT VOLTAGE FOR A 1 KW POWER SUPPLY IS 500 VOLTS.
- THE MAXIMUM OUTPUT VOLTAGE FOR A 2 KW POWER SUPPLY IS 1,000 VOLTS.
- NEW DC SYSTEM IS SIMILAR TO EXISTING SERIES CIRCUIT. TROUBLESHOOTING METHODS ARE SIMILAR. AIRFIELD ELECTRICIANS ARE FAMILIAR WITH SERIES CIRCUIT OPERATION.

MAXIMUM ENERGY EFFICIENCY

DC LED L-852D 10.2 WATTS

INCANDESCENT L-852D 60 WATTS

MAXIMUM ENERGY EFFICIENCY

ROI System Parameters

Number of Fixtures	116
 Energy Price per kWF 	ł \$0.12

- Average Operating Time per year in hours
- Based on operation for 12 hrs./day over the course of 1 year. Interleaved circuit, TFC1 is energized 50% of the time & TFC2 is energized 50% of the time. Assume bad weather requires both circuits to be operated simultaneously 10% of the time. Use 60% of 12 hr./day*365 days per year for calculations.

Z0Z0

Return on Investment

System Factors	APS LED	Incandescent	Cost <mark>(Savings)</mark>	Comments
Capital Equipment Cost- Power Supply	\$9,000.00	\$9,000.00	\$0.00	Investment differential for the circuit power supply.
Fixture Purchase Cost	\$600.00	\$400.00	\$200.00	Investment differential for each fixture.
Capital Equipment Cost- Isolation Transformer	\$0.00	\$80.00	(\$80.00)	Investment differential for fixture isolation transformer.
Total of Capital Equipment Investment			\$13,920.00	
Energy Costs and Savings			Savings (Cost)	
Power Supply Size Used (Watts)	2,000	10,000		
Average Fixture Load (VA)	4.9	30		
Average Isolation Transformer load (VA)	0	4.5	140	This figure is for heating losses for the isolation transformer. For the APS LED, no isolation transformer is used.
				140 The Incandescent load is entered as follows: For a bi-directional 2 x 30W fixture, using one 65W isolation transformer, this is 13/2=6.5VA.
Total Energy Savings (or Costs) per year	\$305.39	\$1,892.79	\$1,587.40	

Return on Investment

Maintenance Cost	APS LED	Incandescent	Cost (Savings)	
Average Replacement Lamp				
Cost	\$0.00	\$40.00		
Average Replace Lamp Labor; Fuel Cost; Coordinate Airfield Closure per Fixture	\$0.00	\$35.00		Industry average cost by customer survey to replace Incandescent lamps.
Average lamp replacements per year	0	2		Incandescent Industry Average by Customer Survey.
Routine Maintenance Cost per year	\$0.00	\$17,400.00	\$17,400.00	
Total Energy Savings per year	\$305.39	\$1,892.79	\$1,587.40	
Total Yearly Savings			\$18,987.00	
On Total Investment of			\$13,920.00	
APPS LED Return on Investment (ROI)			0.073	Years
Fixture Lifetime (years) - 15			Cost (Savings)	Life Cycle Cost
Total System Acquisition Cost	\$78,600.00	\$64,680.00	\$13,920.00	Includes power-supply cost plus total of fixtures and transformer costs.
Installation Cost	\$0.00	\$0.00	\$0.00	
Total Operating Cost (energy)	\$4,580.85	\$28,391.85	(\$23,811.00)	Energy price per kWH is assumed to remain unchanged
Routine Maintenance Cost (light-source + labor only)	\$0.00	\$261,000.00	(\$261,000.00)	Based on routine replacements of light-sources plus labor costs over lifetime of all fixtures.
Total Life Cycle Cost	\$83,180.85	\$354,071.85	(\$270,891.00)	

After 15 years, the total estimated reduction of emissions is 97.5 metric tons of CO2, or about one year's worth of emissions from 18 vehicles or 8.3 to 11.9 homes.

SYSTEM RELIABILITY

- SYSTEM HAS MINIMAL COMPLEXITY RESULTING IN GREATER RELIABILITY.
- FEWER COMPONENTS TO FAIL THAN
 CONVENTIONAL LED SYSTEMS.
- **PWM IS PROVEN TECHNOLOGY.**
- LOWER OPERATING VOLTAGE.

 EXISTING PHYSICAL INFRASTRUCTURE (CANS & CONDUIT) IS PROVEN RELIABLE SYSTEM.

Airport Improvement: September, 2011

By Robert Nordstrom

Illuminating Engineering Society of North America Aviation Lighting Committee

DC POWERED LED TAXIWAY CENTERLINE LIGHTING SYSTEM: A CASE STUDY

Presented to:

IES ALC Fall Conference 2010

ES.

by: Frank Barczak Jeff Pace Carl Johnson © 2010

GREATER ORLANDO AVIATION AUTHORITY

