

Virginia Tech Transportation Institute

Background

- VTTI was established in August 1988 by agreement between US DOT and the University Transportation Centers Program
- We focus on Safety and Efficiency in the entire transportation Infrastructure
- Largest university-level research center at Virginia Tech
 - Approximately 400 faculty, staff and students working on over 200 projects
 - \$80 Million Awarded
 - \$40 Million in Annual Expenditures
 - Largest supporter of both undergraduate and graduate students

Center for Infrastructure Based Safety Systems (CIBSS)

- Specializes in research dealing with safety issues involving the built transportation environment
- Including roadway and vehicle lighting, delineation, signage, roadway geometry, other transportation structures

Unique Capabilities

The Virginia Smart Road

Instrumentation Systems

The Virginia Smart Road

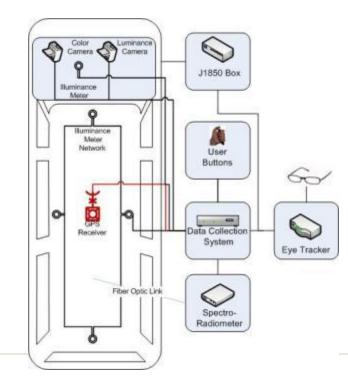
- Advanced Control Room
- Weather capabilities

- Variable Lighting Systems
- Pavement Testing

Experimental Lighting Testbed

- Three luminaires
 - HPS
 - LED
 - 3500K
 - 6000K
 - Metal Halide
 - White HPS
- Variable Bracket Height
- Full Dimability and individual control

Lighting Measurement Systems


- Mobile Measurement Systems
 - CCD based photometry
 - Illuminance
 - Color
 - User inputs

Equipment

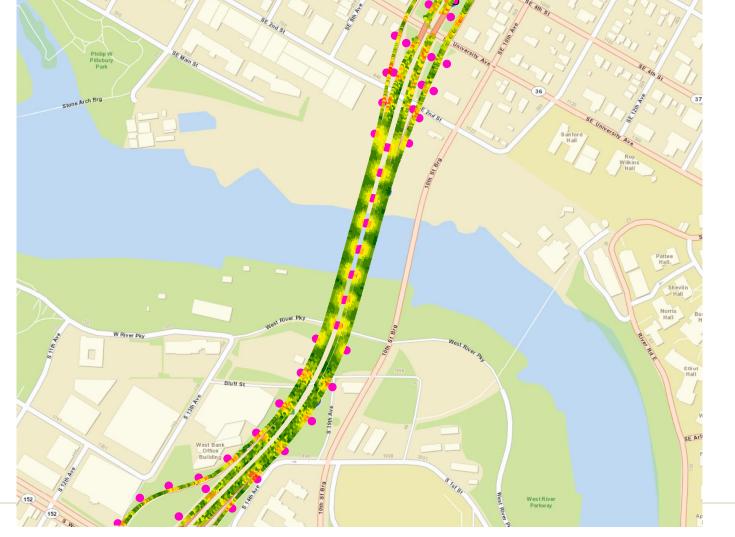
•

• External

- Novatel GPS device mounted at the center of the vehicle
- Illuminance Meter Grid
 - Four weatherproof heads mounted horizontally on the roof of the vehicle in the center of the wheel path

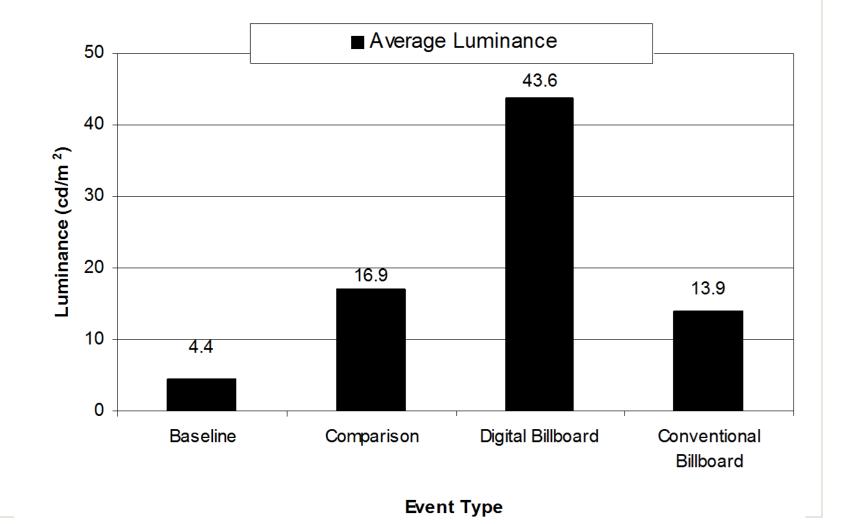
- Internal
 - Illuminance Meter
 - One mounted vertically inside the windshield
 - Luminance Camera
 - VTTI-developed luminance camera to monitor the entire scene
 - Luminance is derived from a calibration procedure performed on each camera
 - Color Camera
 - 1280x960 RGB FireWire camera
 - J1850 box
 - Returns vehicle information from internal vehicle CAN network
 - Spectroradiometer
 - Ocean Optics HR4000
 - Measures spectral information through a fiber optic link to a cosine or sphere collector on vehicle roof
 - Buttons
 - Small push buttons mounted in vehicle to capture human response events
 - Eye Tracker
 - Arrington Research Binocular Eye Tracking System

System Layout



Variations on a Theme

- Robot based lighting measurement
 - Vertical and Horizontal measurement
- Public vehicle lighting monitoring

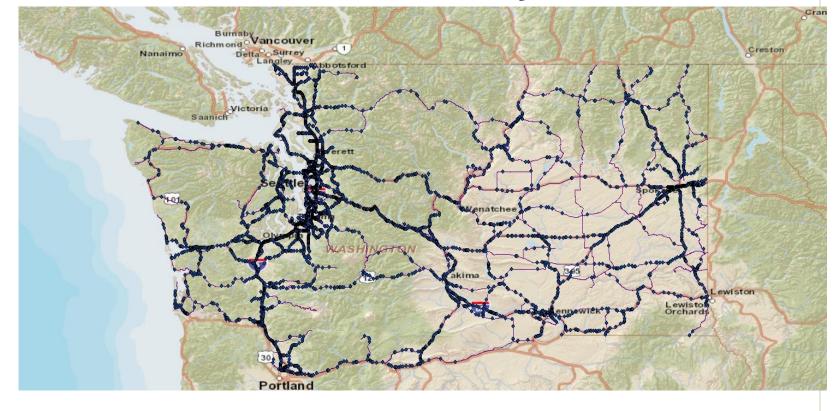

After Data Collection: GIS Lighting Overlay

Selected CIBSS Projects

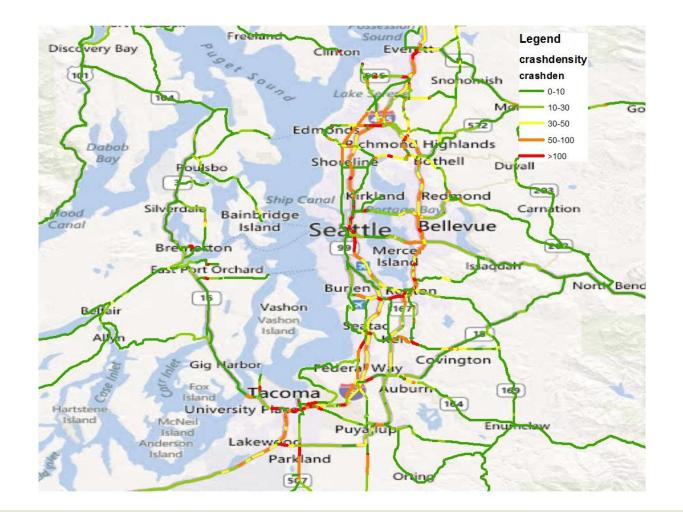
- Spectral Effects of Light Sources
 - Mesopic
 - Color Contrast
- Adaptive Lighting
- Airport Parking Lot Lighting
- Sign Lighting Requirements
- LED Performance Evaluations
- Solid State Lighting Implementation
 - Seattle, Anchorage, San Diego, San Jose, DC
- National Surface Transportation Safety Center of Excellence
 - Visibility in Roundabouts
 - Lighting in Fog
 - Lighting in Rain
 - Bicycle Visibility
- Connected Vehicle UTC
 - Just in Time Lighting Possibilities

Average Billboard Luminance

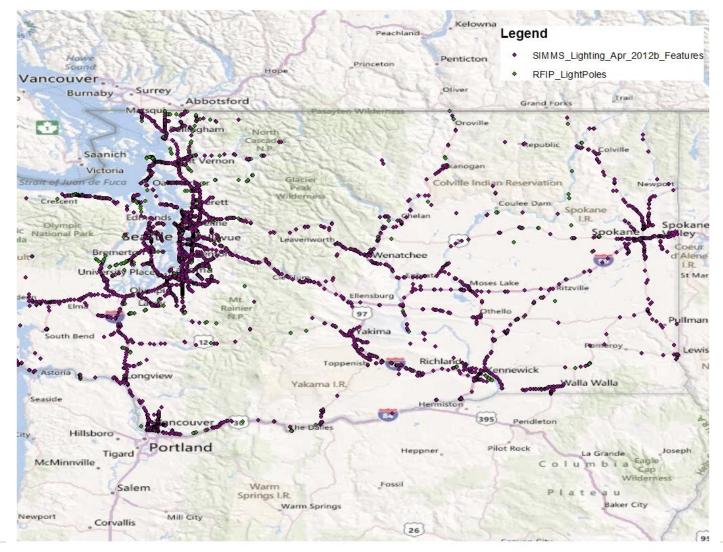
Adaptive Lighting

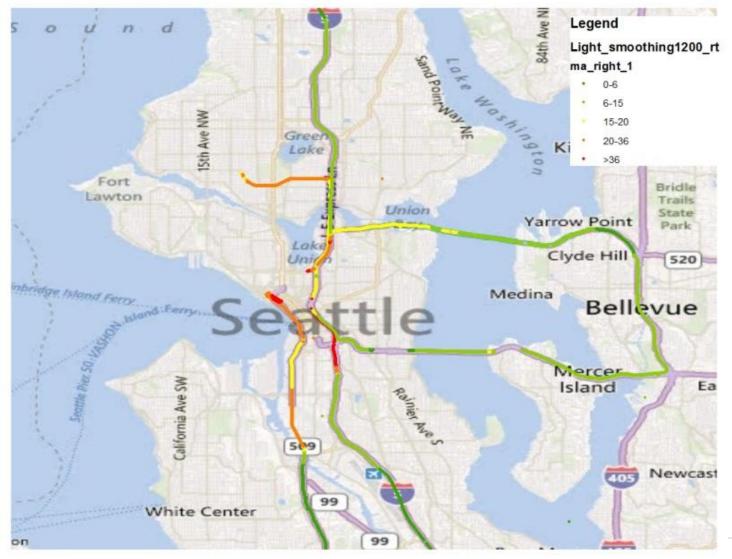

- With the advent of new control and ballast technology we have the ability to adapt a roadway lighting system to the needs of the environment.
 - Traffic Volume
 - Weather
 - Lighting Condition
 - Pedestrian Usage
- Consider it as managing your lighting level as an asset

Why Adapt? Energy Usage


- In 2001:
 - It was estimated that there are 72 929 000 outdoor lighting fixtures in the US
 - Consuming 57.35 Twh of Electricity
 - Costing \$5.9 Billion in energy usage each year
- Potential to reduce energy usage by 25%
 - 50% diming, 50% of the time
 - \$1.49 Billion Savings = \$20 per luminaire per year
- Sliding Scale
 - Install Solid State
 - 50% power reduction * 25% Adaptive Savings
 - 12.5% saving for Adapting = \$10 per luminaire

Washington


Washington Year (Currently Showing 2008 Night Time Crashes)

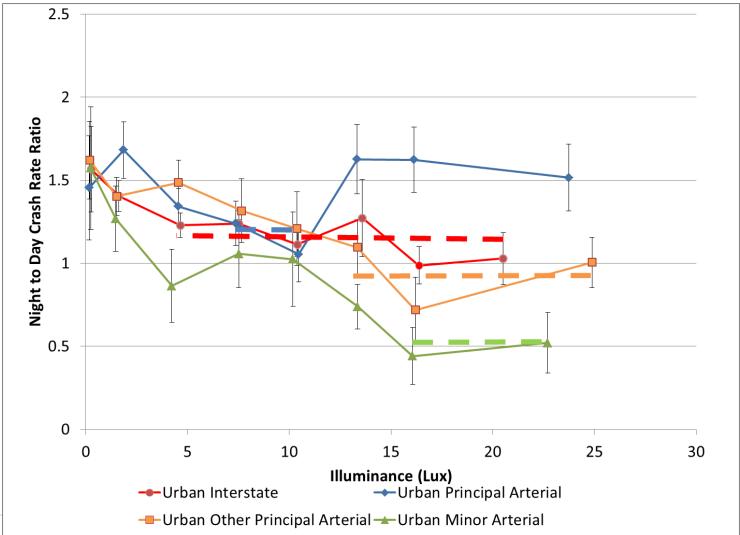

Crash Density per Mile

Light Pole Locations

WA Lighting Data Collection

Analysis

Crash occured during day time


 $Crash Rate_{Day} = \frac{1}{Day time average traffic volume * length of segment}$

Crash Occured during night time $Crash Rate_{night} = \frac{1}{Night time average traffic volume * length of segment}$

The night-to-day crash rate ratio (NDCRR) was calculated as:

Crash Ratenight Night - to - DayCrash Rate Ratio = -Crash Rate_{Dav}

Lighting Impact by Functional Class

Roadway Classification

Parameter	Options	Criteria	Weighting Value
Speed	Very High	> 60 mph	1
	High	> 50 mph	0.5
	Moderate	> 40 mph	0
Traffic Volume	Very High	> 10000 ADT Equivalent	1
	High	> 7500 ADT Equivalent	0.5
	Moderate	> 5000 ADT Equivalent	0
	Low	> 2000 ADT Equivalent	-0.5
	Very Low	<2000 ADT Equivalent	-1
Median	No		1
	Yes		0
Intersection /	High	>1 per mile	1
Interchange Density	Moderate	> .25 / Mile	0
	Low	< .25 per mile	-1
Ambient Luminance	High	Background > 1 cd/m ²	1
	Moderate	Background > .5 cd/m ²	0
	Low	Background < .5 cd/m ²	-1
Guidance	Good		0
	Poor		0.5

Roadway Lighting Levels

Class =5 - (Total of Factors) Design Values

Class	Average			
	Luminance	Max	Max	Veiling
		Uniformity	Uniformity	Luminance
		Ratio	Ratio	Ratio
H1	1	3	5	0.3
H2	0.8	3.5	6	0.3
H3	0.6	3.5	6	0.3
H4	0.4	3.5	6	0.3

Concept of Adaptability for Airport Operations

- Apron Lighting
 - Consider each aircraft stand as an adaptive area
 - Individual Control of each of gates
 - Adapt based on usage (suggestions only)
 - 50 lux for fueling
 - » Could be supplemental on service vehicle lighting
 - 25 lux for service
 - 10 lux for Parking or pushback
 - » Reduction of glare from the lighting system for the pilots
 - 5 lux for parked aircraft or overnight parking
 - » Security only

Questions?

