

Presented by Helmut Hengvoss Helge Mack

Topics

- The Kassel-Calden Airport project
- Used technology concepts
- The implementation in practice
- The energy benefits in total compared to a standard installation
- The lifetime benefits and
- Technology and cost estimation for the increase of work safety by implementation of the Safety Extra Low Voltage (SELV) standard.

The Kassel-Calden Airport Project

Regional Airport Kassel-Calden:

IATA-Code: KSF

> ICAO-CODE: EDVK

Opening date:

> 04 April 2013

Runway details:

length:	2.500 m	
width:	45 m	
orientation:	09 / 27	
ILS CAT I (09) and	CAT III/b (27) operation	on

New Kassel-Calden Airport

Halogen Lights (6.6A)	708
LED Lights (2.2 A)	981
LED-Flash Lights (35 VAC)	44
Single Lamp Control Units	781
Primary Cable	147 km (91 miles)
Secondary Cable (2,5 mm ² ; AWG 13)	59 km (37 miles)
Secondary Cable (2,5 mm ² ; AWG 13) CCRs	59 km (37 miles) 52
Secondary Cable (2,5 mm ² ; AWG 13) CCRs Total Power for all Circuits	59 km (37 miles) 52 181 kW

Used technology concepts

Construction details airfield lighting

LED Taxiway Light Fixture

Light fixture constructed for both secondary current systems

Automatically adapting electronic for

≻ 6.6 A or

> 2.2 A use

LED Approach Sequence Flash Light

Light fixture constructed for max. 100'000 cd peak intensity

Light fixture are powered with SELV 35 VAC

New Kassel-Calden Airport

Power station

Construction CCR transformer

- Primary transformer cabinets:
 - Footprint saving
 - Easy to maintain
 - Clear separation
 between high
 (transformer) and
 low (CCR) voltage

New Kassel-Calden Airport

Construction details transformer rack

- Max. three levels of transformer's
 - Cut Out (secondary circuit)
 - Disconnection secondary cable
 - Grounding
 - > Transformer
 - > Secondary cable

➢ Result

 Clear separation between transformer level and secondary circuit

Construction details cabling

- All cabling is done under the elevated floor level
- each room has a fire separation

➢ Result

Clear room concept

Field installation

runway system

Taxiway system

Manhole installation

What are the reasons to go for a new LED circuit design

Technical Background

The aim of the system design is to get the best balance in between

- Energy saving
- Reduction of maintenance
 - Life time of the installations
 - Minimum of different spare parts
- High grade of work safety

Where are the losses in the LED circuits?

- The total losses at nominal power are ~57 kW
- The losses on the secondary cable forms with 31 kW (54%) the major portion.
- To reduce that losses it was decided to reduce the secondary current to 2.2 A

Principle design of the 6.6 / 2.2 series circuit

The savings in losses for the 2,2 A on the secondary

- The 2,2 A secondary current decrease the losses on the sec. cable about 89%
- The savings losses are in total ~55% at nominal power
- The interesting question:

What are the actual effective savings and how much the change of primary current could add?

What is the share of the intensity steps in the AGL?

Statistically share for a midsize CAT III Airport in Germany

What are finally the effective savings?

As the diagram shows the effective losses are just 1/10 of the calculated nominal losses!

What happened if we reduce the primary current?

- Could there be any disadvantages to go for the additional saving by reducing the primary current?
- Decreasing the current automatically requires an increase of the voltage.

What is the effect of the voltage to the installation?

- Voltage results an electrical field that stresses the insulation material
- Particular in areas with a high concentration of the electrical field the aging of material results a "treeing" with micro discharges

What is the effect to the life time of the installation?

 The literature gives an empirical life time law Life time ~ 1/Uⁿ (n= 9 ... 11) *)

Life Time depending on the Voltage

^{*}Tilman Weiers; Diss. ETH Nr. 17363; Eine Methode zur aussagekräftigeren Bewertung von Maschinenisolierungen

Lower voltage compared to lower current?

- Reducing the circuit voltage provides
 - "Ever" lasting installations (particular for joints, connectors, transformers)
 - Higher grade of work safety with circuits less than 1000 V
 - Best support of SELV-Installations
- Reducing the primary current
 - 1,1 kW additional effective savings on the whole AGL

The current situation at Kassel-Calden?

• The black columns are the theoretical 2,2A low current circuits

Personal safety aspects

- The new 6.6 A / 2.2 A transformers installed at Kassel-Calden Airport fulfills already the proposed new IEC 62870 about the SELV supply for the LED-lights.
- All LED circuits are below 700 VAC and does not require high voltage certifications.
- The LED sequence flash light is powered with 35 VAC according to SELV.

Conclusion

- Energy optimized installations will not consider automatically safety and life time aspects.
- To stay on the 6,6 A and choose for the lower voltage brings best benefits for installation life time and work safety
- The change to the SELV supply provides the first time real work safety on the airport.
- To change to 2,2 A on the secondary minimize the major losses.
- Automatically adapting light fixtures allow to operate mixed installations

What installation provides the best ?

Considering all aspects the 6.6 A / 2.2 A installation provides the optimum in energy, life time and safety.

Questions?

Thank you for your attention.

UCEBIT ERN