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Abstract 

Aircraft landing and taking off in low visibility is a critical area for aviation and the aviation 
industry.  Flights can be cancelled, diverted, or delayed if aircraft cannot land or take off in low 
visibility.  This impacts all users and stakeholders of the National Airspace System (NAS), 
including passengers and freight operators.  Low visibility can develop from a variety of weather 
conditions to include fog, causing air traffic to move from Visual Meteorological Conditions 
(VMC) under Visual Flight Rules (VFR) to Instrument Meteorological Conditions (IMC).  During 
IMC, aircraft are under Instrument Flight Rules (IFR) and only those aircraft that are 
appropriately equipped with appropriately trained crews can continue operations.  If aircraft 
could be equipped such that flight operations could continue for a longer period of time while 
weather conditions degrade, more operations could continue to land and/or depart. The 
alternative is diversions to other airports or delayed take offs. There are great benefits to 
improving low visibility capabilities and this is exactly what the FAA is implementing.   

In a combined effort, and as part of the Next Generation Air Transportation System (NextGen), 
the FAA is in the initial stages of implementing increased low visibility capabilities in an effort 
initiated and led by FAA Flight Standards and supported by Navigation Services.  Prior to this 
work, Standard Category (CAT) I, CAT II, and CAT III were available.  Minima are defined by 
the Runway Visual Range (RVR) system.  New levels of service include take offs with a 
minimum as low as 500’, as well as landing operations that include RVR 1800 (vice RVR 2400), 
Special Authorization (SA) CAT I, and SA CAT II.  These Special Authorizations allow for 
advantages such as lower RVR-defined minima, lower Decision Altitude (DA), and for SA CAT 
II, lower life cycle costs for the infrastructure over the Standard CAT II services.  In an 
oversimplification, Flight Standards grants operational credit for equipage such as the Head Up 
Display (HUD), Flight Director (FD) and Autoland so that such aircraft suitably equipped can 
continue with operations in conditions where other aircraft may have to be diverted.  More 
detailed information related to this effort can be found in [Frodge 2013]1 

In addition to the improved SA levels of service, the FAA has approved straight-in landing 
operations below Decision Altitude (DA), Decision Height (DH) or Minimum Descent Altitude 
(MDA) via 14 CFR 91.175 (l) for aircraft equipped with Enhanced Flight Vision Systems (EFVS). 
In the simplest of terms, an aircraft operator can potentially benefit from this technology by using 
EFVS in lieu of natural vision to descend below DA/DH or MDA down to 100’ above the 
touchdown zone elevation on any straight-in instrument approach. Under 14 CFR 91.175(l), 
EFVS technology provides aircraft operators with the ability to conduct low visibility approach 
operations at thousands of additional airports across the NAS rather than being restricted to a 
limited quantity of airports with CAT II or CAT III systems or only airports with SA approaches. 
Recently, in June of 2013, the FAA released a Notice of Proposed Rule Making (NPRM) that 
would permit operators to use an EFVS in lieu of natural vision to continue to descend from 100 
feet above the touchdown zone elevation to the runway and land. Additionally, this NPRM would 

                                                
1 Enhanced Low Visibility Operations -- Increasing Flight Operations Services in the National Airspace 
System in Low Visibility Conditions, ION Conference MMM-2013, Frodge, Hope, Houghton 
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permit operators with EFVS to dispatch, release, and take-off when the destination weather is 
below authorized minimums2.  

With the advancement of technology and rulemaking, there are great opportunities to improving 
low visibility capabilities. However, as technology evolves, the Industry and Government are 
presented with additional challenges. More specifically, this paper looks at the challenges 
associated with understanding the performance of EFVS systems in a diverse set of low-
visibility conditions. Weather impacts the performance of EFVS sensors and performance 
across manufacturers varies. Additionally, approach lighting systems may vary in layout and 
lighting technology, which also impact EFVS operations. These variables all contribute to the 
complexity of certifying EFVS equipment and of issuing authorizations to conduct EFVS 
operations. A quantifiable and repeatable method of assessing performance of EFVS 
technologies could significantly reduce the time and cost to certify an EFVS, permit new 
technologies to be introduced more rapidly compared to current processes, and help the FAA 
develop appropriate operating conditions and limitations used in authorizations to conduct EFVS 
operations. In a collaborative effort between the Government and Industry, this is exactly what is 
being pursued.  

 

Introduction 
Many factors have contributed to the complexity of assessing the performance of EFVS 
technology. Since 2003, when the first EFVS NPRM was published, significant advances in 
EFVS technologies have been made. In 2007, Congress issued the Energy Independence and 
Security Act that has contributed to the development of LED technology to replace traditional 
incandescent lighting systems. The transition to LED lights directly impacts the performance of 
the IR-based EFVS systems. In addition, the 2013 EFVS NPRM is drafted with an emphasis on 
performance based certification of EFVS systems. Considering all of these factors, the industry 
and government have identified a critical need to effectively assess the performance of EFVS 
technology and related impacts on low visibility operations. As a result, several committees 
were formed to include RTCA SC-213 and SAE G-20.  

The Volpe Center operates and maintains the Otis Weather Test Facility, a 255 acre outdoor 
weather test facility. The facility provides a range of over 2500’ feet and is instrumented with 
towers and weather sensing equipment. The facility receives a variety of low visibility weather 
conditions to include fog, rain, and snow. More details about the facility are described in later 
sections of this paper. Additional background information can be found in [Seliga 2004]3.  
Leveraging the adverse weather conditions at the Otis Weather Test Facility and the variety of 
weather sensing equipment, the facility can be used to assess the performance of EFVS 
technology. In the simplest of terms, the facility would be configured like a static CAT I approach 

                                                
2 Proposed Rule, 14 CFR Parts 1, 23,25, 27, 29, 61, 91, 121, 125, and 135; Federal Register Vol 78, No. 
112, June 11, 2013. 
3 Seliga, T. A., and D. A. Hazen 2004: "The Otis Weather Test Facility at Otis ANGB, Falmouth, MA: An 
aviation weather resource", 11th Conference on Aviation, Range, and Aerospace Meteorology, 3-8 Oct, 
Hyannis, MA American Meteorological Society 
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where (1) the EFVS technology is mounted on a tower emulating the decision height and (2) 
lights would be mounted down range from the EFVS replicating the approach lighting system. 
As the facility is exposed to weather, data is captured from the EFVS and related weather 
measuring systems (e.g. RVR, particle size, etc.) where a correlation between reported visibility 
and visibility as perceived by the EFVS can be made.  

The Volpe Center, in the form of Collaborative Research and Development Agreements 
(CRADAs), has solicited support and interest from EFVS manufacturers and lighting 
manufacturers to address related performance challenges. As part of the CRADA, the 
government provides the manufacturer with access to the Volpe Center’s Otis Weather Test 
Facility and related data that is collected continuously at the facility. This data includes 
information from the EFVS as well as RVR, transmissometers, fog spectrometer, ambient light, 
wind speed/direction, barometric pressure and temperature.  As part of the agreement, the 
EFVS manufacturer and/or lighting manufacturer provide equipment to the government at no 
cost. This collaborative effort offers benefit to both parties and is in the interest of both parties 
ultimately leading to: 

1. defining repeatable metrics that can be used to assess the performance of EFVS 
technology,  

2. minimize cost of performance assessment (when compared to flying), 
3. access to extensive data collection sensors that would be cost prohibitive for a single 

company to maintain and operate and,  
4. a facility to support development of future vision technologies. 

 

Leveraging Previous Work 
Aside from the known developments and implementations of EFVS, it is important to understand 
the physical basis for such applications. Of particular interest in this regard is a paper by the 
German National Research Center for Aeronautics and Space’s (DLR) Remote Sensing 
Technology Institute.4 As part of its project ADVISE (ADvanced VIsual Systems for Situational 
Awareness Enhancement),  DLR investigated the theoretical basis for employing IR cameras as 
part of EVS to improve visibility under ICAO standard RVR CAT I, II, IIa and IIIc landing 
approach conditions. Computations were performed with the aid of the MODTRAN Version 4.0 
atmospheric transfer model developed by the USAF over many decades of related research and 
measurements dealing with IR atmospheric transmissivity and visibility. The DLR study focused 
on transmission in the atmospheric windows of 3-5 µm and 8-12 µm compared to that in the 
visible  band from 0.4-0.8 µm. IR sensor properties were based on the specifications of a 
specific IR camera that operates in the 8-12 µm band and whose threshold Noise Equivalent 
Temperature Difference  (NETD) is 0.15oK.  The influence of the sensor’s transfer functions on 
the contrast radiance was simulated with the TACOM Thermal Vision Model (TTIM) Version 3.1 
that is part of the Physically Reasonable IR-Signature Model (PRISM). PRISM is a 
computational methodology for simulating thermal signatures of targets and backgrounds.  The 

                                                
4 K. Beier and H. Gemperlein, Simulation of infrared detection range at fog conditions for Enhanced 
Vision Systems in civil aviation, Aerospace Science and Technology, 8, 63-71, 2004. 
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model computations included consideration of climatic and seasonal aerosol types and target 
parameters such as their size, temperature and emissivity factors. Additional insights into the 
subject matter can be found in the references cited in the paper as well as throughout the 
extensive IR imaging literature that has evolved over the last 50-years. The DLR study 
investigated whether use of IR cameras with autonomous target recognition can improve the 
range to detect objects compared to human visual ranges under defined meteorological 
conditions. More specifically, and of interest for this research, the DLR study leveraged a 
repeatable method to determine if a target was visible through a method of contrast and 
intensity ratio calculations. 

A list of the relevant features of the study follows: 

 Consideration of ICAO visual range categories CAT I, II, IIa and IIIc as the basis for 
comparing visual responses in the selected IR and visual spectral ranges 

 Simulation of an IR-sensor with an automated software algorithm to detect and identify 
an airport runway and relevant obstacles 

 Calculations that compare the achievable IR detection range for a typical state-of-the-art 
IR sensor, yielding results for 

o The spectral contrast transmission of the atmosphere at different distances for all 
wavelengths ranging from the visible spectrum to the LWIR at 8-12 µm. 

o CAT I conditions arising from mid-latitude summer, rural atmospheric aerosols 
o CAT II conditions arising from mid-latitude winter, radiation fog 
o CAT IIIa conditions arising from mid-latitude winter, advection fog 

 

The authors consolidated their results in the following table (Table 1; DLR Table 5) that 
indicated calculated detection ranges in kilometers (km) in the Middle IR (MIR) and Thermal IR 
(TIR) bands for different CAT conditions, a temperature difference of a target to background of 
∆T = 10o K and a detection distance or range of distances defined by a sensor Noise Equivalent 
Temperature Difference (NEDT) threshold of 0.15o K. Except for the latter sensor parameter, 
these results represent the effects of the atmosphere on visibility in the MIR and TIR spectral 
bands. 
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 Visibility Detection Range (km) 

CAT VIS (km) MIR  TIR 

  3-5 µm  8-12 µm 

I 1.22 3.0-9.8  5.9-10.1 

II 0.61 0.54  2.4 

IIIa 0.305 0.294  0.293 

IIIc 0.092 0.089  0.087 

Table 1 - Calculated Runway Visual Range (RVR) or detection range performance in the IR under varying 
meteorological conditions compared to normal RVR in the visible spectral region of light (Beier and 
Gemperlein, 2004). Note that these results do not account for the sensor transfer characteristics that limit the 
spatial and radiometric resolution of the IR camera. 
 

The range of IR RVR values under CAT I conditions reflects differences due to different climate 
and aerosol models. Notably, both IR spectral regions exhibited significantly enhanced 
visibilities of more than a factor of two and as much as more than a factor of eight in both the 
MIR and TIR bands.  Aside from the results presented in the table, the study found that the TIR 
lowest visibility was associated with tropical climate at high absolute humidity in combination 
with maritime aerosols while the best TIR performance occurred in wintertime conditions with 
low absolute humidity and rural aerosols. The best MIR performance was associated with 
climatic conditions with high temperatures such as occur during summer and in tropical regions. 

Under CAT II conditions, the TIR spectral region gave a factor of four improvement in visibility, 
while the MIR region showed no improvement (slight degradation) in visibility. For CAT IIIa and 
CATIIIc conditions, neither the MIR nor TIR bands showed any improvement in visibility over the 
visible spectrum. 

The DLR study identified the capabilities of early generation IR cameras. Today’s generation of 
IR cameras and EVS systems have demonstrated vast improvements in visibility performance 
under low visibility conditions. There are a wide variety of EVS products that include night vision 
goggles (NVG), un-cooled/cooled IR systems, and multi-spectral systems. All of these products 
utilize varying technologies to provide a pilot with an IR image that is useful during night and day 
conditions that include various types and degrees of low-visibility conditions. These systems 
operate across different frequencies and provide varying images based on environmental 
conditions. However, performance across EVS products can vary greatly. The DLR report is 
an important study that attempts to quantify IR visibility performance relative to normal RVR 
visibility values. As part of the collaborative process, the government and industry are working 
together to promote the quantification of visibility in order to baseline EFVS technology and 
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provide repeatable metrics that can be used to assess the performance of EVS imaging 
technologies. 

 

Test Environment 

The Volpe Center’s Weather Test Facility in Cape Cod, MA is ideally situated with a climate 
favorable for evaluating the performance of visibility and other weather related sensors. The 
facility is operated by the USDOT Volpe Center and has a wide variety of weather 
instrumentation including visibility sensors, present weather sensors, anemometers, and 
ceilometers. The facility is exposed to: 

• 500 ft. ceilings or less and/or less than 1 SM visibility 11% of the time 

• 37 inches of annual snow fall on average 

• 48 inches of annual precipitation on average 

• 18 thunderstorms per year on average5 

The Otis Weather Test Facility consists of an approximate 255 acre secure tract of land on the 
Otis Air National Guard Base. It has served as the FAA’s primary test site for evaluating the 
performance of NG RVR and PC RVR visibility and ambient light sensors.  It also played a 
critical role in the development and testing of the Federal Aviation Administration (FAA) 
Automated Weather Observing System (AWOS) that were models for the later development of 
the Automated Surface Observing Systems (ASOS) that, in addition to contributing to basic 
needs of aviation, serves as a primary climatological observing network in the United States. 
Previously, the Weather Test Facility was operated by the USAF Geophysics Laboratory which 
used it in visibility-related research that resulted in the successful development of single point 
visibility sensors that form the basis of runway visual range (RVR) systems deployed throughout 
the world.  

The following figure depicts the general layout of equipment, lights, and cameras at the Otis 
Weather Test Facility. The facility is equipped with telescoping towers, EVS/EFVS cameras, 
visible cameras, luminance cameras, RVR forward scatter meters, transmissometers, ambient 
light sensors, a fog spectrometer, ceilometer, barometric pressure sensors, as well as 
temperature and humidity sensors. In addition to the diverse sensor suite at the facility, these 
sensors are polled continuously and data is stored in a database that is accessible via a web 
interface in near real-time. Although the figure depicts one specific layout, the position of 
sensors, lights, and towers can be modified to address specific needs.  

                                                
5 “The Otis Weather Test Facility at Otis ANGB, Falmouth, MA: An aviation weather resource", 11th 
Conference on Aviation, Range, and Aerospace Meteorology, 3-8 Oct 2004, Hyannis, MA American 
Meteorological Society 
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Summary of Upcoming Work
The Otis Weather Test Facility, in coordination with the FAA and Industry, is an ideal location to 
address a variety of research issues. The facility is being used to assist in addressing several 
research questions that include:

• What quantifiable metrics can be used to correlate the pilot’s ability to detect approach 
lights and the runway environment and safely land in a given weather condition?

• How do we elicit a sight-based landing decision using EFVS technology?
• At what distance from the runway threshold does a target’s visibility affect the pilot’s 

decision to land in a given weather condition?

To help address these questions, the Volpe Center is leveraging the work that was conducted  
by K. Beier and H. Gemperlein. The metrics, defined in the DLR study and further expanded by 
the Volpe Center (identified below), will be used to correlate performance of EVS technologies 
using trained pilots with actual (not simulated) weather conditions recorded at the Otis Weather 
Test Facility. Metrics that are being investigated for this correlation study include:
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• Contrast Metrics – the following contrast metrics make an assumption that the light or 
heat source is a point source with a normal distribution.  Light or heat sources of 
different distributions will require modified equations.

o Full Width at Half Maximum (FWHM): this is an adaption of a metric used in 
optics.  It measures the width of the target at the point that is half of the 
maximum amplitude.

 For a point source of normal distribution the FHWM will have the following 
equality:

𝐹𝑊𝐻𝑀 = 2�2 ln(2)𝜎 ≈ 2.355𝜎
where 𝜎 is the standard devation of the distribution.

o Signal-to-Noise Ratio:  the ratio of the signal the noise
𝐼 ̅
𝜎

where 𝐼 ̅ is the average pixel intensity and 𝜎 is the standard 
devation of the pixel values of a region of interest. 

o Contrast-noise ratio (CNR): the equation is
(𝐼𝐵̅−𝐼𝑇̅)
𝜎𝐵

 where  𝐼𝐵̅ is the average intensity of the background,  𝐼𝑇̅ is the average 
intensity of the target (i.e. light or thermal source), and 𝜎𝐵 is the standard 
deviation of the background.

o Contrast: this equation is borrowed from radiography and has the form  
2∗𝜎

𝑏𝑖𝑡𝑑𝑒𝑝𝑡ℎ
 where 𝜎 is the standard deviation of an area which may be the entire 

region of interest, the target, or the background.
o Area Weighted Average (AWA) Delta-T: this equation assumes values of 

temperature from a thermal sensor.  For our measurements we will substitute 
pixel intensities whether from a thermal source or not.  The equation is:
 ∆𝑇 = 𝑇�𝑇 − 𝑇�𝐵

• 𝑤ℎ𝑒𝑟𝑒 𝑇�𝑇 is the average intensity of the target and 𝑇�𝐵 is the 
average intensity of the background.

o Root Sum Square Delta-T (RSS): like the AWA delta-T, this assumes values 
from temperature but pixel intensities will be used.  The equation is:
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 ∆𝑇 = �(𝑇�𝑇 − 𝑇�𝐵)2 + 𝑆2 
• Where 𝑇�𝑇 is the average intensity of the target, 𝑇�𝐵 is the average 

intensity of the background, and 𝑆2 is the variance of the target. 
o Contrast (application of Weber’s Law): Weber’s Law states that the change in 

the magnitude of a stimulus is proportional to the magnitude of the stimulus, 
rather than being an absolute value.  This law can be applied to the human visual 
system’s ability to discern intensities.  Higher intensity changes for the target and 
background are required to perceive the same target as the background gets 
brighter.  The equation is 

(𝐼𝑇̅ − 𝐼𝐵̅)
𝐼𝐵̅

 

where  𝐼𝐵̅ is the average intensity of the background and  𝐼𝑇̅ is the average intensity of the target 
(i.e. light or thermal source). 

o  
• Other Metrics 

o Pixel Size – the pixel size, width and height, will be computed manually once.  
This will require a feature that has a width and length in physical units easily 
seen in the acquired image/field of view.   

o Frame Size – this will be in pixels acquired from the images.   
o Pixel count of the target and background. 
o Noise – the temporal standard deviation of a region of the image.  For thermal 

cameras this region must be uniform thermally and also passive (no active or 
dynamic thermal bodies such as plant life or water).  For visible cameras, the 
region will consist of the darkest region in the field of view.  This measurement 
will be done once and periodically or as needed afterwards. 

o Maximum intensity of a 3x3 pixel sized region of the target and of the 
background – the target and background regions will be scanned (i.e. a rolling 
window search) for the brightest 3x3 pixel square region. 

o Minimum intensity of a 3x3 pixel sized region of the target and of the 
background – the target and background regions will be scanned for the darkest 
3x3 pixel square region. 

o Difference of maximum and minimum intensities – The difference of the 
brightest and darkest 3x3 pixel regions for both the target and the background. 

o Number of resolvable light sources - The number of resolvable light sources 
when multiple light sources are in a sequence.  For example, can five MALSR 
light sources be resolved or do they appear as one merged light source?  To 
make this decision the Rayleigh Criterion will be applied. 
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Human Factors will be a significant consideration in this work and will factor into the analysis. 
The field data collected at OTIS will be analyzed to determine if pilots should be able to perceive 
targets based on an assumed visual acuity.6 7  

Additionally, an experiment is being designed to assess how EFVS and/or Runway Visual 
Range(RVR) and Prevailing Visibility (PV) sensor information affect a pilot’s decision to land. 
This blind experiment will take place in a lab setting intended to emulate a cockpit window. Pilot 
participants will be outfitted with an eye tracker and taken through a randomized series of 
images. 

The first task of the experiment will be to elicit a landing decision based on sight and RVR/PV 
sensor information. Independent variables include: 

1. Weather Condition (ASOS weather phenomenon category) 
2. Image type (EFVS vs. Non-EFVS) 
3. Visual Range data (RVR vs. PV)  

For each condition, pilots will be shown an image and given RVR or PV information. They will 
then be asked to provide the following information based on the visual cues in the image and 
the visual range information provided to them: 

• Rate their level of comfort landing (on an operationally defined Likert Scale) 
• Identify the cue(s) they noticed first 
• Identify the most salient cue(s) 

The second task of the experiment is to elicit a decision to land purely based on sight. 
Independent variables include: 

1. Weather Condition (defined by an ASOS weather category) 
2. Image type (EFVS vs. Non-EFVS) 

Pilots will be told they have the weather and clearance to land, and like the first task, pilots will 
be asked to rate their level of comfort landing and indentify cues.  

The analysis of the data collected in these experiments  may include but are not limited to the 
following: 

• Plot  pilots’ comfort level ratings based on visibility  
• Determine if the presentation of RVR data, PV data, or the absence of either has a 

significant effect on a pilot’s comfort level rating. 
• Compare the subjective decision to land in a given condition with corresponding 

objective data of whether or not a person with a given visual acuity should be able to see 
targets based on contrast/metrics value(s) 

                                                
6 Commercial and airline pilots are required by the FAA to have a visual acuity for distance sight of no 
less than 20/20 with or without visual correction. 
7 Previous research of contrast perception as a function of visual acuity will be leveraged. 
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• Compare targets that participants indicated were most salient in a given condition to the 
contrast/metrics value(s) for the targets 

• Determine what target was noticed first, and what target was most fixated on for a given 
weather condition using the eye tracker data 

o Compare to target(s) pilots reported noticing  first, and reported as most salient 
 

The correlation of visibility metrics and the pilots’ capability to conduct a low visibility operation 
is an important step in the process to assess performance of EVS technologies. A quantifiable 
process, correlated with human perception, to assess EVS performance will allow the 
government and industry to (1) reduce traditional performance assessment costs, (2) reduce 
overall duration of the performance assessment, (3) offer an opportunity to introduce new 
technologies at a more rapid rate when compared to current performance assessment 
processes, and (4) establish specific conditions and limitations for authorizations to conduct 
EFVS operations.  

 




