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Background

 LED-based solutions offer many potential 
benefits for airfield applications
› Energy savings
› Long life

• More reliable operation
• Reduced maintenance costs

 However, LED systems are relatively new and 
there are not sufficient data about long-term 
performance.
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Background: Economic viability

 The initial cost of LED-based luminaires can be 
significantly higher than that of traditional luminaires
› Life-cycle cost effectiveness is determined by potential 

energy and maintenance savings, and 
› the life cycle cost can only be determined if a realistic 

useful life value is known.

 Knowing the useful life of a luminaire allows planning 
and execution of preventive maintenance without 
disruption of airport operations.
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Background: Photometric performance

 A functional definition of life is needed for LED 
airfield luminaires
› Life of existing luminaires is well understood due to 

the predictable nature of incandescent lamps
• Light output depreciation relatively small before lamp fails

› LED-based solutions will have differing performance 
depending on the system integration and the 
application environmental conditions

› Safe airport operations depend on the adequate 
photometric performance of luminaires at all times
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Useful life: A definition

 Luminaires are expected to provide the required 
photometric characteristics for the length of 
their useful life, thus:
› Useful life is the time until a given luminaire falls out 

of photometric specifications in terms of intensity 
distribution or color.

› Luminaire life should not be based on L70 values for 
LEDs alone.
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Goal of the study

 The goal of this study is to gather data on light 
output depreciation, color shift, and intensity 
distribution changes from different types of 
luminaires under different temperatures of 
operations
 This study

› does not consider catastrophic failure
› does not consider the effect of power quality on 

driver performance
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Protocol for testing

• Photometric characterization of luminaires
– Measured intensity distribution using bar photometer

• Operation of luminaires at constant 6.6 A
– At three pre-selected LED board temperatures
– ~ 55°C, 80°C, 100°C (similar to IES LM-80-08)

• Gathered relative light output and spectral power 
distribution (SPD) every ~1000 h for 10,000 h

• Final intensity distribution measured at the end of 
test period

• Determined percent light output depreciation, and 
color and intensity distribution shift over test period
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IES LM-80-08

 Operation at three case temperatures: 55°C, 85°C, and 
a 3rd value specified by the manufacturer, all at the 
same drive current.
› Case temperature: X (-2°C)
› The temperature of the surrounding air: X (-5°C)
› Relative humidity should be less than 65%
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Example IES LM-80 + TM-21
Interpolation at 70C
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Tuttle, R. et al., 2011. TM-21 Update: Method for Projecting Lumen Maintenance of LEDs. CORM 2011 Technical Conference.
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IES TM-21: Interpolation

 Temperature interpolation

› Arrhenius equation to calculate in-situ decay rate constant:
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A = pre-exponential factor;
Ea = activation energy (in eV);
Ts,i = in-situ absolute temperature (in K);
kB= Boltzmann’s constant (8.6173x10-5 eV/K)
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Tuttle, R. et al., 2011. TM-21 Update: Method for Projecting Lumen Maintenance of LEDs. CORM 2011 Technical Conference.
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Schematic of test setup
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LED board 
temperature 
control and 
monitoring

Driver current
and
time-on 
monitoring

• Lambertian diffusing lens

• Beam from luminaire

• Enclosure to control stray light into photosensor 
and to maintain desired operating temperature

• 6-in metal vault to contain heater element

• Mounting plate to keep geometry between light 
beam and sensors constant for duration of test

• Photosensor for continuous light output
monitoring

• Fiber optic connector for SPD measurements

• Heater element

• 6.6A external driver to 
power luminaire

Luminaire under test
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Samples tested

 Three red/white directional 
Runway Centerline luminaires

 Three white Touchdown Zone 
luminaires
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Runway Centerline luminaires
Light output depreciation

Sample A0 - Tb = 59 °C
WHITE and RED LEDs
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Sample A2 - Tb = 80 °C
WHITE and RED LEDs
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Sample A3 - Tb = 100 °C
WHITE and RED LEDs
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Driver failure 
at 7624h

Driver temperature:    
A0 (90 °C)                            A2 (100 °C)                          A3 (130 °C)
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http://www.airporttech.tc.faa.gov/Safety/Downloads/TC-TN12-61.pdf

Runway Centerline luminaires
Color shift – White 
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Sample B1 - Tb = 100 °C
WHITE LEDs
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Sample B2 - Tb = 80 °C
WHITE LEDs
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Sample B1 - Tb = 55 °C
WHITE LEDs
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Touchdown Zone luminaires 
Light output depreciation
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B1 (55 °C)                            B2 (80 °C)                             B3 (100 °C)

Driver failure 
at 560h

Driver
failure at 3360h

Driver temperature:    
B1 (58 °C)                            B2 (82 °C)                          B3 (104 °C)
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Last measurement available before failure at 
3360 h
560 h

17



© 2013 Rensselaer Polytechnic Institute. All rights reserved.

Runway Centerline luminaires
Intensity distribution – Red 
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Measurement after failure at 7624 h
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Intensity distribution – Red 
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Measurement after failure at 7624 h
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Initial measurement, t= 0 h
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Summary (1)

 Overall test duration 10,404 hours
 Complete system failures due to driver loss:

› Two touchdown zone luminaires
• at 560 h of operation (100 °C condition)
• at 3360 h of operation (80 °C condition)

› One runway centerline luminaire
• at 7630 h of operation (100 °C condition)
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LED driver reliability

 Output electrolytic capacitor is one of the 
weakest components in an LED driver.

 Heat affects electrolytic capacitors.
› ESR increase and capacitance decrease are 

indicators of capacitor degradation.
› The LED driver output current ripple increases 

when ESR increases and capacitance decreases.

 Therefore, driver output current ripple can 
be used to predict LED driver life.

 Driver lifetime decreases exponentially 
with temperature.

LED Driver A Lifetime Profile
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Summary (2)

 Light output and chromaticity maintenance
› Runway centerline luminaires (A0-A3 samples)

• Relative light output loss  of 30-37%
• Color shift between 32-step and 52-step MacAdam ellipses

› Touchdown zone luminaires (B1-B3 samples)
• Relative light output loss of 5-11%
• Color shift between 7-step and 16-step MacAdam ellipses
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Summary (3)

 Intensity distribution maintenance
› Runway centerline luminaires (A2 sample at 80 °C)

• White: 0.5° to 1° change at full-width half-max intensity

› Runway centerline luminaires (A3 sample at 100 °C)
• Red: 0.5° to 0.75° change at full-width half-max intensity

› Touchdown zone luminaires (B2 sample, 80 °C)
• White: <0.5° change at full-width half-max intensity
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Conclusion

 LED systems have many components; failure of any of 
the components will lead to system failure
› LED/LED Array, optics, heat sink/thermal management 

components/TIM, mechanical housing, driver/ control, etc.  

 LM-80 data not a good life metric for LED system.
› Need an industry accepted definition of system life

• and accelerated test methods that can predict system 
parametric/catastrophic failure under realistic operating conditions

 Future studies to include on/off cycling
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