# Visual Guidance/Runway Incursion Prevention

# Research & Development

**Update** 

IESALC Spring meeting May 8, 2014 Washington DC



# **TOPICS**

- 1. Airport Linear Source Visual Aid
- 2. Frangible Connections and Structures
- 3. Electrical Infrastructure Research
- 4. Constant Current Regulator Loading
- 5. Visual Aids for Airport Construction
- 6. EMAS Lighting, Signs and Marking
- 7. RSA/Approach Signs and Markings

# **Airport Linear Source Visual Aid**



# Experiment 1 Stimuli – "No Noise"

- Linear element spacing: 50, 100, 200 ft
- Linear element length: 2, 8, 32 ft
- Configurations: 90° (low-speed taxiway exit) and 30° (high-speed taxiway exit), left and right



# **Experiment 1 Results – No Noise**

## Accuracy was always > 90%



# **Experiment 2 Stimuli – Visual Noise**



# **Experiment 3 - Dynamic**

- Dynamic animation starting from 2000 ft away, 50 mph
- 30°/90° left/right taxiway from runway
- Centerline delineation (white/runway, green/taxiway)
- 2, 8 or 32 ft element length; 50, 100, 200 ft spacing



# **Experiment 4 – Lower Intensity**

- → Same as experiment 3 except luminance was decreased to:
  - > White 30 cd/m<sup>2</sup>
  - Green 18 cd/m²
  - > Blue 1.8 cd/m<sup>2</sup>
  - ➤ Background 0.25 cd/m²



# **Experiment 2 to 4 Results**



# **Developed Predictive Response Time Equation**



RT (ms) = 
$$286 - 607 \log L + 989 \log S$$

Combinations of delineation element length and spacing to achieve the same relative response times expected from 2-ft-long delineation elements spaced at 50 ft and 100 ft.

| Base Case 1 | Element length         | 2 ft    | 6.2 ft  | 12.0 ft | 19.2 ft |
|-------------|------------------------|---------|---------|---------|---------|
|             | Element spacing        | 50 ft   | 100 ft  | 150 ft  | 200 ft  |
|             | Relative response time | 1784 ms | 1784 ms | 1784 ms | 1784 ms |
| Base Case 2 | Element length         |         | 2 ft    | 3.9 ft  | 6.2 ft  |
|             | Element spacing        |         | 100 ft  | 150 ft  | 200 ft  |
|             | Relative response time |         | 2081 ms | 2081 ms | 2081 ms |

# **Validation Study**

- → Validation study was conducted using the 9 linear segments created with blue and green LED sources.
- → For the experiment, prototype linear light source segments in 2-ft, 4-ft, and 8-ft lengths were used at a 25-ft and 100-ft spacing.
- → The experiment was conducted in a large and enclosed space where the ambient illumination could be turned off.
- → The results were consistent with the laboratory experiments using computer displayed images.

# **Validation Study**



View of one of the test conditions as presented to observers that participated in the validation field experiment.

### **PHASE THREE**

- → Task 1: Conduct a simulation evaluation. (4 months)
  - ➤ Utilizing the FAA Technical Center's Simulation facility.



### **PHASE THREE**

- → Task 2: Conduct a field evaluation. (6 months)
  - ➤ Utilizing the Partnership to Enhance General Aviation Safety, Accessibility and Sustainability (PEGASAS) Center of Excellence.
  - ➤ Three of the six core members also own and operate their own airports (Purdue, Ohio State, Texas A&M).







## **Schedule**

| Activity                | Completion |  |
|-------------------------|------------|--|
| Test Plan               | 02/28/12   |  |
| Phase 1                 | 09/30/12   |  |
| Analysis/Decision Point | 10/31/12   |  |
| Phase 2                 | 02/15/13   |  |
| Analysis/Decision Point | 02/27/13   |  |
| <b>Extended Phase 2</b> | 07/31/13   |  |
| Phase 3                 | 06/30/15   |  |
| Final Report to Sponsor | 09/30/15   |  |

# Frangible Connections and Structures

# Research on Frangible Connections and Structures

Due to the wide variety of test methods/procedures utilized in the past, it is necessary to re-evaluate the FAA requirements for frangible testing.

This will enable a path to simplification/standardization of testing procedures and identify potential areas that require clarification.

By fully understanding the current condition of the governing requirements, a standardized procedure can be developed that will eliminate the large variety of differences in test procedures and allow comparison between all tests performed on different products.

# **Frangible Structures**

- Equipment located in airfield safety areas (e.g. RSAs and TSAs) must be mounted on frangible supports.
- Frangible mechanisms can be designed to withstand high wind loads but remain very sensitive to impact loads.
- Frangible mechanisms tend to be directional in strength, i.e. they carry high tension and bending but very low shear.





# **Types of Frangible Connections**







**Application of Fuse Bolts** 

**Examples of Frangible Couplings** 

# Research on Frangible Connections and Structures

#### Phase I:

- Task 1 Requirements Analysis ← Completed
- Task 2 Finite Element Development \_\_\_\_
- Task 3 Test Setup Development On-going

#### Phase II:

- Task 4 Test Plans / Procedures Development
- Task 5 Test Setup Fabrication
- Task 6 Dynamic Testing and Evaluation
- Task 7 Guidebook Development

# Electrical Infrastructure Research



# **EIRT Testing Team Recommended Two Paths**

- → Path # 1:
  - Fixture Centric
    - An airfield lighting architecture where the fixture controls its intensity

- → Path # 2:
  - Vault Centric
    - An airfield lighting architecture that directly controls the fixture intensity from the power source in the vault(same as the traditional 6.6 amp)

# **Roadmap Testing Phase**

- → Alpha testing at FAATC, May 2014
- Integration including mixing of product
- Fixtures will be instrumented and monitored by FAA equipment to determine performance
- Identify any deficiencies, or adjustments to be made
- Beta testing at PEGASAS Airport July, 2014
- Similar set up as alpha testing
- Large circuit
- Legacy mode will be available in case there is an issue with the circuit
- Report (Date TBD)

# Investigation of Maximum Constant Current Regulator Loading



# **Project Objectives**

- Investigate reports of overloaded CCRs relating to a predominance of constant Volt-Amperes (VA) sign
- Investigate if restrictive maximum loading at lower steps for CCRs is specific for a particular CCR technology
- Determine any relationship between lower step loading and the use of Light Emitting Diode (LED) fixtures
- Determine if the lighting system power factor has an adverse effect upon the CCR
- Investigate the impact on power factor and input power when CCRs are under loaded.

# **Test Locations**

- → Louis Armstrong New Orleans International Airport (MSY), New Orleans, LA
- → George Bush Intercontinental/Houston Airport (IAH), Houston, TX
- → Ryan Field Airport (RYN), Tucson, AZ

# **Schedule**

| Event/Deliverable                     | <b>Tentative Completion Dates</b> |  |
|---------------------------------------|-----------------------------------|--|
| Airport Circuit Investigation/Testing | April 4, 2014                     |  |
| FAATC Post Investigation/Testing      | July 31, 2014                     |  |
| Analysis/Draft Report                 | August 29, 2014                   |  |
| Final Report/Recommendations          | November 15, 2014                 |  |

# Visual Aids for Airport Construction

# **Taxiway or Movement Areas Construction Signs**



# Airway Facilities Tower Integration Laboratory (AFTIL)



# **Evaluation of character legend colors**



# **Field Evaluation Phase - Airports**

- → TF Green State Airport (PVD)
- → Long Island Macarthur Airport (ISP)
- → Chicago O'Hare Airport (ORD)
- → Orlando Sanford International Airport (SFB)
- → Portland International Airport (PDX)

## **Construction Ahead - PVD**



# **Construction on Ramp - PDX**



## **Construction Ahead - SFB**



# **Findings**

- → "CONSTRUCTION AHEAD" sign 109 respondents
  - > 87% sign was conspicuous.
  - > 88% sign was comprehensible at an adequate distance.
  - > 90% sign adequately notified them of the existing construction.
- → "CONSTRUCTION ON RAMP" sign 51 respondents
  - → 92% sign was conspicuous.
  - → 88% sign was comprehensible at an adequate distance.
  - → 94% sign adequately notified them of the existing construction.

# **Questions/Comments?**