Illuminating Engineering Society (IES) Government Contacts Sub-Committee Meeting

Donald Lampkins

Navigation Programs, Lighting Systems Sub-Team AJM-3222

October 20, 2014

Overview

- Organizational Structure
- Future Navigation Strategy
- Advanced Lighting Concepts
- Active Projects
- Specification Updates
- Procurement Opportunities

Air Traffic Organization (ATO)

Enterprise Services

Ground Based NAVAIDS and Lighting Systems

Lansine Toure AJM-322 Manager

Ground Based NAVAIDS Team

Gonghe Zhang

Greg Rugila

Lighting Systems Team

John Varas AJM-3222 Manager

Donald Lampkins Ndubuisi Nnorom Renee Williams

Lighting Systems and Ancillary Equipment

- Medium Intensity Approach Lighting System with Runway Alignment Indicator Lights (MALSR)
- High Intensity Approach Lighting System with Sequenced Flashing Lights (ALSF-2)
- Precision Approach Path Indicator (PAPI)
- Runway Visual Range (RVR)
- Runway End Identifier Lights (REILs)
- Radio Remote Control System (RRCS)
- Radio Remote Control Interface Unit (RRCIU)
- Replacement Lamp Monitoring System (RLMS)
- Lead-in Lights
- Semiflush Flashers & Steady Burners
- Low Impact Resistant (LIR) Structures
- Transformers
- Frangible Bolts
- Aiming Devices

IES Conference October 20, 2014

Federal Aviation Administration

6

NAS Navigation Strategy

- The NAS Navigation Strategy provides information for the sustainment of current navigation services, the transition to performance-based navigation (PBN), and the delivery of the Next Generation Air Transportation System (NextGen) services.
- It addresses the planning and actions required through the 2025 -2030 timeframe.

Navigation Programs Status

- Today's navigation programs support safe operations, but...
- Today's ground-based systems:
 - Rely on technologies that were originally fielded <1950s
 - Require use of fixed routes that cannot be dynamically adjusted to changing operational conditions
- Need to evolve ground-based systems and space-based systems together to fully realize future NAS/NextGen operational improvements

Navigation Program Evolution

- Today
 - NAS navigation services are based on a combination of ground-based and satellite-based services in all phases of flight
 - PBN capabilities have been initiated in the NAS
- Future
 - Navigation services will continue to be based on a combination of ground based and satellite based services in all phases of flight
 The ground based navaids (GBN) infrastructure will be reduced
 - Navigation services will be primarily provided by satellite based systems

Non-precision Transition (Final Approach)

Precision Transition

(Final Approach)

Medium Intensity Approach Lighting System with Runway Alignment Indicator Lights (MALSR)

Service Description

 The MALSR provides visual information on runway alignment, height perception, roll guidance, and horizontal references for Category (CAT) I precision approaches and Special Authorization CAT II Operations

Roadmap to the future

IES Conference

October 20, 2014

- Transition from current PAR-38 incandescent lamps to energy efficient LED technology
 - Developing alternative LED lamps that can use existing lamp fixtures to minimize cost of conversion
 - Establish a transition plan to replace incandescent lamps
 - Determining need to retain some infra-red emission to support enhanced flight vision systems (EFVS) and Night Vision Systems (NVS)
- Transition from current PAR-56 threshold lamps to LED technology
 - Rely on LED technology to improve reliability and maintainability and reduce ops costs

High Intensity Approach Lighting System with Sequenced Flashing Lights (ALSF-2)

Service Description

 The ALSF-2 provides visual information on runway alignment, height perception, roll guidance, and horizontal reference for all categories of precision approaches, primarily Category (CAT) II/III

Roadmap to the Future

- Evaluate potential for reducing footprint and number of lamps needed to support CAT II/III approaches
- Leverage lessons learned from the MALSR program to implement Light Emitting Diode (LED) in the ALSF-2 design to the extent possible

Precision Approach Path Indicator (PAPI)

Service Description

- PAPI provides visual approach slope information to pilots and enables them to make stabilized descent and approach clearances over obstructions
 - PAPI is used primarily to support Visual Flight Rules (VFR) operations

Roadmap to the future

- Insert LED technology into legacy lighting systems that addresses improving reliability and maintainability
 - Possible to reduce the lifecycle cost of Visual Glide Slope Indicator (VGSI) by at least 50 percent

Runway End Identifier Lights (REILs)

Service Description

- The REIL is a non-precision visual aid that provides rapid and positive identification of the approach end of a particular runway to the pilot.
- REILs are required for current and future NAS operations
- Approx. 400 REILS are beyond their 20 year lifecycle; over 200 REILs are >30 years old

Roadmap to the future

- Transition from zenon flashtubes to LED
 Technology
- Insert LED technology into legacy lighting systems to improve reliability and maintainability
- Current program is replacing REILs to at a rate of ~10/year

Runway Visual Range (RVR)

Service Description

- Runway Visual Range (RVR) provides air traffic controllers with a measure of the distance a pilot can expect to see the runway
- RVR becomes critical when visibility is less than a mile
- RVR information is required for departure and Category (CAT) II, III, and many CAT I precision approaches

Roadmap to the Future

- RVRs are required for the current and future NAS operations to
 - Replace aging transmissometers and non-PCbased systems
 - Support future precision approach requirements

Lighting Systems Future Initiatives

- ALSF-2/MALSR : Conduct Analysis on the feasibility of reducing the footprints of these lighting systems
- Redesign MALSR system based on LED technology
- Redesign ALSF-2 system based on LED technology

IES Conference October 20, 2014

Federal Aviation Administration

19

PAPI LED Project

- Objective: The primary objective is to fully deploy LED PAPI by using the System Development, Deployment and Implementation phases of FAA's Acquisition Management Systems (FAMS) process.
 - Project Activities
 - Preliminary Design Review
 - Critical Design Review
 - Design Qualification Test
 - Operational Test
 - Configuration Audits
 - Product Baseline
 - In-Service Management

PAPI LED Project

Current Status

- Conducted the Functional Configuration Audit /Physical Configuration Audit and the Provisioning Conference, April 2014
- Projected In-Service Decision, April 2015
- LED PAPI systems available by 4th Quarter 2015
- Tentative plans to install at three (3) locations

PAPI Flight Comparison

IES Conference October 20, 2014

Federal Aviation Administration

23

MALSR LED PAR-38 Replacement Lamp Project

- **Objective:** Determine the I/R requirements for a PAR-38 LED replacement lamp. This will includes a feasibility study, developing requirements and evaluating the concept by prototyping, testing and conducting operational capabilities demonstrations.
 - Phase I:
 - Conduct Feasibility Study to determine if integrating IR into a LED Par 38 and Par 56 fixtures is achievable.
 - Phase II:
 - Procure prototype MALSR LED replacement lamps and conduct Confidence Test
 - Procure MALSR LED replacement lamps and conduct an Operational Capability Demonstration (OCD) with EFVSequipped aircraft
 - Phase III:
 - > LED Lamp First Article development
 - Design Qualification Tests
 - FAA Operational Evaluation

Test Activities

Confidence Test

- Validate "numbers" to ensure we are in the same ballpark and that technologies are compatible under <u>simulated low-visibility</u> <u>conditions</u>
- Photometric and EVS testing

Pre-Flight Test

- Consists of "Laboratory" and/or "Field" testing
- Accomplish the "easy" stuff before tackling the weather!
- Ensure "look-and-feel" is validated before committing to
- flight

Flight Test (OCD) & Duration Testing (Volpe)

- •Formal Flight Testing –chasing "relevant" wx will prove challenging
- •Continue "static" weather related testing to supplement flight testing

Confidence Test

FAA Photometric Testing

What: PRD 4.4.3.2: Measure average intensity, maximum intensity, chromaticity

	Steady Burning Average Intensity (Candela)								
Pattern	Low (4%)	Medium (20%)	High (100%)						
Main Beam (±8°)	400 ± 60	$2,000 \pm 300$	$10,000 \pm 1500$						

Where: FAA Technical Center (Atlantic City, NJ)
When: August 14th, 15th, & 16^{th,} 2012
Results: Validated Requirements

FAA Photometric Test

	1079	1463	1804	2261	2740	3236	3570	3844	3985	4054	3897	3664	3217	2718	2281	1813	1406	1042	819	
8 Deg +-	1445	1846	2485	3168	3837	4578	5000	5324	5543	5642	5582	5189	4502	3752	3217	2528	1952	1441	1033	
	1838	2562	3288	4185	5193	6038	6539	6978	6871	7261	6896	6645	6095	5205	4306	3433	2656	1922	1308	
	2388	3239	4358	5360	6509	7259	7710	8019	8306	8108	8078	7752	7340	6421	5533	4489	3457	2501	1761	
		\ .																		
	3018	404	5131	6442	7529	8111	8621	9082	9086	9243	9039	8800	8195	7451	6511	5566	4301	3122	2186	
	3605	4867	5973	7259	8176	5802	9343	9775	10049	10090	9905	9359	8878	8230	7428	6276	5214	3762	2648	
	3999	345	6624	7780	8719	9305	9988	10430	10872	10699	10596	10282	9461	8664	7860	6728	5786	4224	2962	
	4373	5699	7026	8120	8962	9732	10567	11164	11591	11657	11352	10796	9953	9090	8169	7169	6056	4755	3325	Average = 0272 ad
	4487	6028	7241	8249	9122	9934	10829	11550	12275	12581	11925	11264	1 029 4	9262	8405	7346	6359	5063	3604	9372 Cu
	4607	6053	7222	8349	9231	10128	10834	11807	12818	13180	12645	11563	10430	9295	8320	7364	6322	5164	3766	Maximum
	4504	5837	7102	7907	\$067	9768	10748	11719	12500	13176	12586	11715	9999	9134	8091	7200	6250	5143	3774	= 13180 cd
	4347	5635	6790	7651	8726	9393	10276	11036	12136	12078	11800	10490	9487	8659	7826	7055	6068	4829	3585	
	3895	5260	6422	100	8104	8945	9357	10081	10551	10978	10283	9624	8996	8227	7242	6535	5676	4464	3155	
5 Deg +-	3527	4734	5826	6639	7546	8132	8709	9058	9218	9392	9066	8799	8098	7589	6770	6014	5162	3838	2733	
Meets -	2886	4005	5070	5891	6714	7456	7804	8183	8293	8205	8277	7843	7440	6776	6220	5359	4561	3231	2330	
Minimum	2323	3222	4341	5163	5899	6535	6840	7265	7313	7372	7300	7047	6667	5994	5490	4708	3710	2697	1890	
	1799	2546	3365	4233	4990	5463	6016	6467	6603	6529	6443	6316	5787	5250	4612	3806	2937	2176	1470	
	1346	1902	2516	3110	3864	4508	5065	5370	5549	5553	5343	5168	4766	4292	3605	2796	2180	1504	1110	
	966	1313	1834	2328	2792	3382	3704	4088	4245	4266	4175	4029	3553	2981	2450	1973	1515	1118	837	

IES Conference October 20, 2014

cd

Confidence Test

EVS Ground Testing

What: Test the cameras' ability to image the lamps in quantities of digital units, pixels and analysis of the images for the documented EVS camera test settings in a laboratory test environment at short range.

Where: Kollsman Facility (Merrimack, NH)

When: August 7th, 8th, and 9th 2012

Results: Determined EVS cameras can image LED's

EVS Ground Test

EVS Camera Test Equipment

- PAR-38 power supply
- PAR-38 60W MALSR Lamp
- PAR-38 150W MALSR Lamp
- LED/IR MALSR LRU 1, power supply and controller
- LED/IR MALSR LRU 2, power supply and controller
- MALSR Lamp Holder
- Goniometer

- EVS camera I, power supply and computer
- Data collection equipment for EVS camera I
- EVS camera II, power supply and computer
- Data collection equipment for EVS camera II
- 5 Neutral Density filters and mounts (Optical Density 0.3, 0.7, 1, 2, and 3) OD = 7

EVS Ground Test

- Test Set-up
 - Controlled laboratory environment that is free from stray external illumination
 - Laboratory camera-to-lamp test distance shall be a minimum of 25 meters.
 - Dark background Field of Regard for the EVS cameras shall be greater than 10 times the image size (pixel [x, y]) of the lamp test units

EVS Camera Test Results

	Maximal on-axis		Total Power	Total Power	
Power			normalized	normalized	
	(SNR)	FWHM	over a hemisphere	to PAR38 150W	
PAR38 150W	11.7	7.65	8.98	1	
PAR38 60W	14.7	6.90	2.57	0.29	
LED	4.2	4.00	0.94	0.11	

Confidence Test Conclusions

- Photometric requirements were met
- EVS Cameras displayed LED Prototype images on monitor
- LED Prototype IR were still visible through Neutral Density filters as high as 3.5 OD - equivalent to 0.0316% transmission of signal to camera
- Test Results (Photometric, Radiometer and EVS Camera) were encouraging

Pre-Flight Testing

- Consists of "Laboratory" and/or "Field" testing
- Accomplish the "easy" stuff before tackling the weather!
- Ensure "look-and-feel" is validated before committing to flight

Pre-Flight (Laboratory Testing)

Completed Test

- Temperature
- Humidity
- Altitude
- Salt Fog
- Wind and Rain
- Photometric
- Chromaticity
- Infrared
- Power Interruption
- Voltage Variation
- Voltage Harmonic
- Current Harmonic
- Power Factor
- Power Line Surge
- Power Consumption
- LED Circuitry Temperature
- Weight
- Pulse Repetition Rate

Ongoing Test

- Sand and Dust
- Vibration
- Ice Accumulation
- Grounding and Bonding
- EMI

Pre-Flight (Laboratory Testing)

- Infrared Measurements
 - Spectral irradiance measurements of the LED light source, at each intensity step, shall be made over the wavelength of 1,000 nm to 5,000nm in 50 nm increments

Sample Nu	mber	CRT13	308211113	113-001-1		Input Volta	age	120	Vac
Warm-Up			15 minutes	S	1	Intensity Level		High	
(C.,	Angular Radiant Intensity (W/Steradian) 1,300nm - 2,400nm					2,400nm	N: 3408 (A		
Vertical				Hori	zontal De	grees			
Degrees	-8.0	-6.0	-4.0	-2.0	0.0	2.0	4.0	6.0	8.0
8.0	3.5	4.7	6.7	8.2	8.9	8.6	7.4	5.7	4.4
6.0	4.4	6.2	11.1	13.9	14.9	14.1	11.9	8.7	5.7
4.0	6.1	10.0	20.0	25.1	26.3	23.2	18.4	13.5	8.4
2.0	7.8	14.3	30.5	40.0	42.3	36.2	25.6	17.3	11.0
0.0	8.6	17.3	37.1	46.4	50.7	46.5	33.8	20.4	12.8
-2.0	8.6	17.6	38.1	47.3	51.3	47.4	32.3	19.8	12.2
-4.0	7.1	14.2	32.7	42.1	45.2	40.6	26.1	16.4	10.0
-6.0	6.0	10.2	23.4	30.6	32.0	26.1	18.8	12.2	7.7
-8.0	4.8	7.4	14.0	18.0	18.4	16.0	12.0	8.2	5.6

Input	Int. Level	Position	W/Str.	Ratio
120Vac	High	H-V	33.8	NA
75Vac	Med	H-V	33.8	1.00
50Vac	Low	H-V	33.8	1.00

Pre-Flight Test (Laboratory Testing)

• Infrared Measurement Comparison

	Confidence 8/12	Lab 9/13						
Total Power Normalized to the PAR-38 150W								
150w	1	1						
60w	.29	.82						
LED	1 st Generation	2 nd Generation						
	.11	.39						

OCD (Flight Test)

- Formal Flight Testing
 - Chasing "relevant" weather will prove challenging
- Requirement Verification and data gather effort
 - Current applications, standards, and specifications to demonstrate overall NAS operational capability

OCD (Flight Test)

Incandescent MALSR 200FT AGL

OCD (Flight Test)

LED MALSR 200FT AGL

LED PAR-38 Replacement Project Summary

- LED PAR-38 met majority of requirements in our LED Performance Requirements Document (LED-PRD-001)
 - Photometrics
 - Chromaticity
- Seven (7) flights were conducted during clear weather
- Without weather could not validate if LED's with IR is sufficient for EFVS operations during Category I weather
 - Very encouraged with results even without weather
- Planned to move forward but...

Aviation Weekly Article

Approach Lights Problems Lead To Broader Examination Of LED Rollout

- "The lights are overpowering, blotting out visibility."
- "The fundamental problem is that these lights have been fielded with no testing done,"
- "... FAA has not conducted testing to determine the potential effect of the lights on pilots at night and in different weather conditions, including rain, fog, smoke, haze and "break out effects" when a pilot descends below low cloud bases on an instrument approach.
- "develop a flight-test plan which will include appropriate FAA technical service organizations as well as industry operators, aircraft and avionics manufacturers"

Pictures Are Worth 1000 Words!

With The Right Camera!

Sometimes Bright Lights are good and sometimes they're not!

Severe IMC (300 RVR) Severe VMC

LED Symposium (October 7th and 8th)

- Objective:
 - Focus is on Approach Lighting
 - Identify needed Areas of Research and Testing
 - Achieve Collaboration from Stakeholders
 - Establish Plan of Action and Timelines
 - Fix It!
- Presenters:
 - Industry: ALPA, RPI, ADB, Gulfstream
 - FAA: Navigation Programs, Airports, Tech Center, Flight Standards, CAMI, Volpe
- Outcome:
 - Established Three (3) Groups
 - Science, Infrastructure and Operational

Effects on LED Projects

- Test alternate incandescent lamps that meets the Energy Act
- More Flight Testing
 - Visual (Fog, Rain, Snow, etc)
 - I/R (Fog, Rain, Snow, etc.)
- More Science Studies
- Revalidate of Requirements
 - Intensity Steps
 - Photometrics
 - Brightness
- Significantly impacts schedule and changes the scope
 - LED PAR-38 Replacement
 - LED PAPI

Next Steps

- Work with Stakeholders and FAA to identify resources needed to continue evaluation of LED Technology
 - Acquisition of new lamp technology
 - Developmental Testing
 - Operational Testing (static and dynamic)
 - Safety Management System evaluations
 - Configuration Management actions
 - Acquisition Planning
 - Implementation

IES Conference October 20, 2014

Federal Aviation Administration

47

Replacement Lamp Monitoring System (RLMS)

- Objective:
 - To replace the constant current regulators and implement lamp monitoring on the Airflow and Godfrey ALSF-2 systems.
- Status:
 - Procuring and installing RLMS kits
 Denver, CO
 - Resolving issue of part obsolescence

LEAD-In Lights

- The Lead-In Lighting System (LDIN) is a visual navigational aid used for flying visual and instrument approach procedures where special problems exist with hazardous terrain, obstructions, or noise abatement procedures.
 - There are currently 14 LDINs installed
- Objective:
 - To replace the LDIN lights at JFK (TLK Bank)
- Status:
 - Successful returned to service the LDIN (TLK) at JFK International Airport, April 2014
 - Coordinate plans to replace other banks
 - JFK QPP 13R Jamaica, NY
 - ➢ JFK TLKB 13L Canarsie, NY
 - ➢ JFK TLKC 13L Canarsie, NY
 - ➢ JFK TLKD 13L Canarsie, NY

Low-Voltage Individual Control Cabinet (LVICC)

- Objective:
 - To develop and approve an ICC that reduces the voltage from 2000V to 400V and interfaces with semiflush flashers. LVICC is compatible with MALSR and ALSF-2 systems
- Status:
 - Conducting Operational Test
 - Updating MALSR and ALSF-2 product baseline
 - Updating training material for technicians
 - Installed at various locations
 - Flagstaff, AZ
 - San Jose, CA

Semi-Flush Flasher Light Unit (SFFLU)

- Objective:
 - To develop and approve a semiflush flashers light unit through the FAA's Developmental Hardware Process.
- Status:
 - Completed Development Test
 - Initiating Operational Test Activities
 - Installed SFFLU at various locations
 - ➤ Flagstaff, AZ
 - San Jose, CA

Specification Updates

- RVR Specification
 - Anticipated Approval (March 2015)

Radio Remote Control System

- Anticipated Approval (November 2015)
- REIL Specification
 - Anticipated Approval (TBD)
- MALSR Specification
 - Anticipated Approval (TBD)
- ALSF-2 Specification
 - Anticipated Approval (TBD)

Procurement Opportunities

 You should continue to monitor the FAA Contracting Opportunities Website for procurement opportunities

FAA Contracting Opportunities website: https://faaco.faa.gov/

Lighting Systems Team Contacts

Name	Projects	Phone		
John Varas	Manager	202.267.4539		
Renee Williams	RVR, LEDs, LIR	202.267.9923		
Ndubuisi Nnorom	RRCS, Lead-in, RLMS, Semiflush Flashers	202.267.9883		
Donald Lampkins	MALSR, PAPI, LEDs	202.267.7332		

Questions

