
Section 5 
VERTICAL FORCE AND FLIGHT STABILITY REQUIREMENTS 

FOR FRANGIBLE STRUCTURES 
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Recommendations 

 Develop practical flight path disruption limits for 
impact by small aircraft. 

 Most importantly quantify reasonable limits for impact 
induced yaw or roll rotations. 

 Vertical force measurements shall be included in future 
testing.  

 Prohibit the application of devices that do not 
exhibit local windowing mechanisms for frangibility. 

 Navajo Wing Modeling Improvements 

 Validation testing of wing impacts 

 Uncertainty analysis on simulated wing response 

 Further improvements to the soft HC impactor are 
needed to better represent the wing. 
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Vertical Forces and Flight Stability 
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Vertical Forces and Flight Stability 
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Vertical Forces and Flight Stability 6 

Device 
Type 

Model 
Number 

Reference 
Model 

Height (m) 

Impact 
Distance 
from Top 

(m) 

Top Mass 
(kg) 

Aluminum 
Lattice 

RAF M02 M02 6 1 0 

Aluminum 
Pipe 

RAF M26 M26 6 1 20 

Composite 
Lattice 

RAF M27 M27 6 1 20 

Composite 
Pipe 

RAF M28 M28 6 1 20 



Post Impact Velocities 7 

Device 
Type 

Model 
Number 

Vx 
(m/s) 

Vy 
(m/s) 

Vz 
(m/s) 

RotX 
(rad/s) 

RotY 
(rad/s) 

RotZ 
(rad/s) 

Aluminum 
Lattice 

RAF M02 38.89 -0.003 -0.148 0.203 -0.008 -0.123 

Aluminum 
Pipe 

RAF M26 
(100 msec) 

38.62 -0.007 -0.384 0.535 -0.042 -0.442 

Composite 
Lattice 

RAF M27 38.81 -0.001 0.021 -0.026 0.002 -0.131 

Composite 
Pipe 

RAF M28 38.85 0.001 0.002 -0.003 0.000 -0.071 

Apply as Initial Conditions 

for Post Impact Free Flight 



Free Flight after Impact (1.0 sec) 
Aluminum Pipe - Top 
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Free Flight after Impact (1.0 sec) 
Aluminum Pipe - Side 
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Free Flight after Impact (1.0 sec) 
Aluminum Lattice – No Top Mass 
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To scale: Aircraft travels 3.7 plane lengths in 1.0 sec 



Free Flight after Impact (1.0 sec) 
Aluminum Pipe 
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Free Flight after Impact (1.0 sec) 
Composite Lattice 
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Free Flight after Impact (1.0 sec) 
Composite Pipe 
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TC2 Cantilevered From RAF  14 



Impact Test Simulation:  
Aluminum Pipe 2 mm wall – 5.0 kg Top Mass 
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Tower Response – WT (Wrap and Tear through) 

 

Peak Force = 31.9 kN  <  45 kN 

 

Maximum Energy = 42.2 kN-m  <  55 kN-m 

 

Wing Damage Category = 2 



Progression Through Impact 
Aluminum Pipe 2 mm wall – 5 kg Top Mass 
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TC2 Wing (No Structure Aft of Aft Spar) 
Aluminum Pipe 2 mm wall – 5.0 kg Top Mass  
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Outline 

 Review of LS-DYNA model for the Piper Navajo 

 Navajo impact simulations on FAA ALS structure 

 Structural response of FAA ALS and Navajo wing 

 Effect on flight dynamics (including Product C) 

 Comparison of impactor type on FAA ALS 

response (Rigid, HC, Navajo Wing) 

 Reaction forces on the FAA ALS pole 

 Comparison of FAA ALS structure response. 

 Conclusions on impactor type 
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Piper Navajo 
 

Max Takeoff Weight 
 2948 kg. (6500 lb) 

Representative Aircraft 

Main Spar 
 

Front Spar 

Leading Edge 

Assembly 

Riveted 
Aluminum 

Construction 
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 Detailed structural and mass information from Piper Aircraft 
Service Manual, Parts Catalog and Engineering Drawings. 

 Nonlinear material behavior and fastener strength information 

from MIL-HDBK-5J and other open literature sources. 

 



Navajo LS-DYNA Model 

Rigid Body 
Model 
(blue) 

 

Rigid Body 
Engines 
(brown) 

Deformable 
wing 

structure 
(grey) 

Deformable 
engine 
mounts 
(brown) 

Rigid Body 
Model 
(blue) 

 Deformable 
engine 
mounts 
(brown) 
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 Model constructed to predict damage to wing from impacts 
at various locations from varied frangible structures. 

 Remainder of aircraft modeled with rigid bodies to get correct 

C.G. and Moments of Inertia for predicting vehicle dynamics. 

 



Navajo LS-DYNA Model 

Deformable Wing Model (Skin Semi-Transparent) 

Front Spar 

Main Spar 

Stringers 

Tiebreak 
Failure for 
Fasteners 

 High-fidelity model of the main airframe was developed. 

 Includes nonlinear aluminum material behavior and 

embrittlement in regions with holes from fasteners. 

 Connection failure included based on fastener design values. 
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Navajo LS-DYNA Model 

Aircraft Mass Distribution 

 

Auxiliary 
Fuel Cell Main  

Fuel Cell 

 Mass distribution estimated 
based on similar aircraft 
component weights. 

 The modeled structure was 
mass scaled to include non-
structural mass not explicitly 
in the model. 

 E.g., insulation, hydraulics, 
control lines, fuel, etc. 

 Fuel weight was distributed 
in the position of the fuel 
tanks. 

 Weight distribution based 
on maximum fuel capacity 
and max takeoff weight. 
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Navajo Material Modeling 

 Navajo Al Alloys  

 Piecewise linear plasticity  

constitutive model. 

 Fracture at engineering design 

failure strain. 

 Regions with holes from fasteners 

embrittled using Net Ligament Loss 

methodology. 

 Uncertainty in degree of embrittlement and actual 

fracture strains affect the crushing and damage to the 

wing model 

 Recommend (1)validation testing of wing impacts and (2) 

uncertainty analysis on simulated wing response 
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FAA ALS Structure Impact 

Simulation – Navajo Wing Bay 4 
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 Impact positioned between leading edge ribs at bay 4. 

 Joint fails during impact with leading edge, but pole does 

impact main spar with some damage to spar. 

 

 

 

 



FAA ALS Structure Impact 

Simulation – Navajo Wing WS 147  
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 Impact positioned at rib outboard of Bay 4. 

 Joint fails during impact with leading edge, but NO damage to 

main spar. 

 

 

 

 



LIR Structure Impact Simulation with 

Navajo: Flight Dynamics 
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 Peak yaw rate from impact can be significant. 

 Rate not affected much by impact location 

(on rib vs between). 

 Other considerations: Control surfaces on trailing edge (not 

modeled) could be damaged if product wraps around wing. 

 

 

 

 

 
WS 147 Bay4 

FAA 
Approved 
Products 

Impact 
Point 

Yaw Rate 
(deg/s) 

Roll Rate 
(deg/s) 

1 
Bay 4 3.06 0.6 

WS 147 (rib) 3.01 0.23 

2 Bay 4 10.27 1.98 



HC Impactor Force on Lighting 

Structure: FAA ALS  
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 Net contact forces between an impactor and a structure can be 

extracted from simulations. 

 These forces show similar histories to the load cell data, but without 

the higher frequency response coming from the test frame. 

 

 

 

 



Impactor Force on FAA ALS Lighting 

Structure: Various Impactors 
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 Simulation contact forces allow us to compare the reaction load of 

the LIR structure on the wing compared with the two impactor types. 



Impactor Force on FAA ALS Lighting 

Structure: Various Impactors 
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 The reaction load on the rigid impactor has a very different force 

history on the structure than from the soft HC and wing. 

 Structure response leads to  

least energy absorbed. 

 The HC impactor has similar  

force duration, but greater  

magnitude 

 Total energy not significantly  

different for two wing impact  

locations. 

 HC impact still too high and rigid 

too low compared to wing at these 

locations. 

 

 

 



FAA ALS Lighting Structure 

Response: Wing vs Rigid Impactor 
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Navajo Wing 
At Rib (WS147) 

Rigid  
Impactor 

5 ms 10 ms 15 ms 20 ms 

Note: impactor removed from view 



FAA ALS Lighting Structure 

Response: Wing vs HC Impactor 
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HC  
Impactor 

5 ms 10 ms 15 ms 20 ms 

Note: impactor removed from view 

Navajo Wing 
At Rib (WS147) 



Effect of Impactor on FAA ALS 

Structure Response 
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 Structural response of the FAA ALS is significantly different for a 

rigid and soft impactor. 

 More localized damage to pole with rigid impactor 

 Joints fail more quickly  with rigid and at different locations. 

 Response with the honeycomb impactor more closely 

resembles the Navajo wing response.  

 Significant improvement over a rigid impactor.  

 Damage to the FAA ALS pole is still larger and more localized with 

the HC impactor.  

 Further improvements to the soft HC impactor are needed to 

better represent the wing. 

 

 

 



Summary 

Vertical forces are significant factors in 

both aircraft flight stability and wing 

damage 

 Local windowing failure reduces 

vertical forces 
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Recommendations 

 Develop practical flight path disruption limits for 
impact by small aircraft. 

 Most importantly quantify reasonable limits for impact 
induced yaw or roll rotations. 

 Vertical force measurements shall be included in future 
testing.  

 Prohibit the application of devices that do not 
exhibit local windowing mechanisms for frangibility. 

 Navajo Wing Modeling Improvements 

 Validation testing of wing impacts 

 Uncertainty analysis on simulated wing response 

 Further improvements to the soft HC impactor are 
needed to better represent the wing. 
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