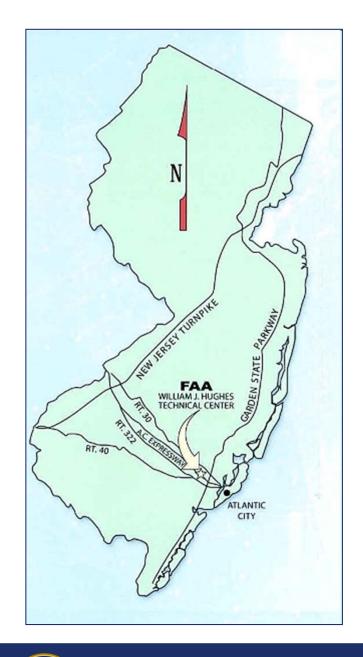

FAA Visual Guidance R&D Update

Presented to: IESALC

By: Mike DiPilato


Date: October 23, 2017

FAA William J. Hughes Technical Center at ACY

3,000 Federal/Contractor Employees
1,000 non-FAA Tenants
Over 5,000 Acres

FAA Technical Center at ACY

Who are we?

FAA Airport Technology R&D Branch (ANG-E26)

Airport Safety R&D Section
Airport Pavement R&D Section

Mission: Conduct the necessary research and development required to enhance the safety of operations at our nation's airports and to ensure the adequacy of engineering specifications and standards in all areas of the airport systems and, where necessary, develop data to support new standards.

http://www.airporttech.tc.faa.gov/

FAA Airport Technology R&D Branch

Program Sponsors:

- FAA Office of Airport Safety and Standards
 - Airport Engineering Division (AAS-100)
 - Airport Safety and Operations Division (AAS-300)
- FAA Office of Planning and Programming
 - Planning and Environmental Division (APP-400)
- FAA Lighting Systems Office
- Oher FAA Lines of Business as needed Air Traffic Organization
 & Flight Standards

Research is funded under the Airport Improvement Program (AIP)

FAA Airport Safety Research Program Areas

Visual Guidance

Lights, Signs, Paint/Markings, LEDs, IR, Other Visual Cues, Incursion Reduction, Electrical Infrastructure,
 Photometrics, Obstruction Lighting, Lighting Innovations, Heliports, NAS Vis Aides, Special Projects

Airport Planning & Design

- RIM, Trapezoidal Grooves, Rwy/Taxiway Design, Capacity, Spaceports, Design Stds

Runway Surface Operations & Technology

Rwy Friction, CFMEs, Winter Ops, TALPA RCAM, Deicing, EMAS, FOD Detection

UAS (Drone) Integration at Airports

Airport Applications and Detection

Wildlife Mitigation

Avian Surveillance/Deterrence (Radar), Wildlife Strike Data Collection/Analysis, Wildlife Management

Aircraft Braking Friction

Aircraft braking performance on contaminated surfaces

Airport Safety & Surveillance Sensors

Low cost surveillance, AeroMACS, Sensor Technology

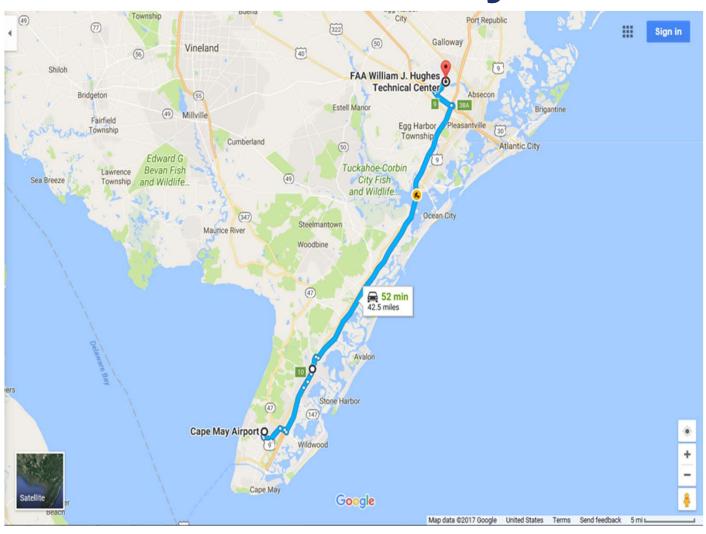
Airport Noise & Environmental

ARFF

 ARFF Vehicles, Firefighting Systems, FF Agents, Tools, Composites, Technology, New Large Aircraft (NLA) Strategies & Tactics, Agent Methodology, NFPA/ICAO Stds

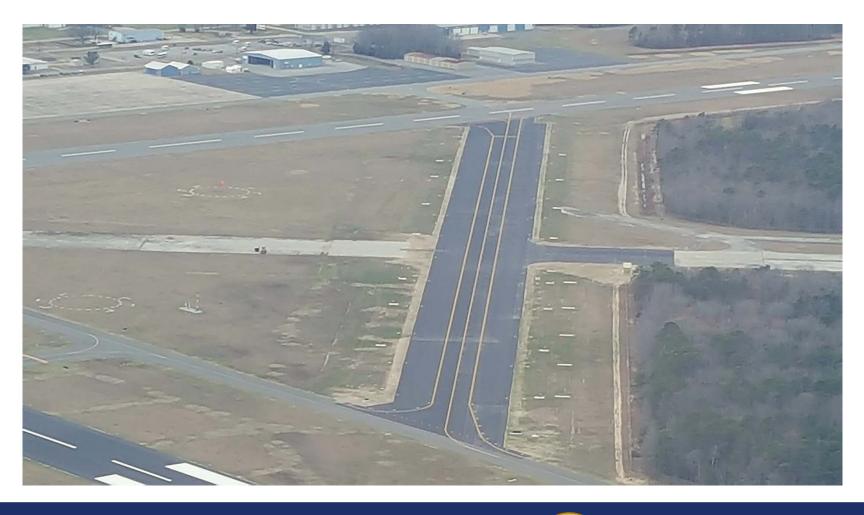
FAA Visual Guidance R&D Program

RPA S5 - Visual Guidance S5.1 Electrical Infrasturure		FY19
EIRT Testing at FAA Research Taxiway - Cape May, NJ		
FAA Research Taxiway Maintenance/Operations		
S5.2 LED Lighting Research		
LEDs with IR		
Performance Specification for IR Emitters for Vis with NVG		
High & Medium Intensity Rwy Edge Omni Light Output		
New LED R&D		
S5.3 Lighting Innovations		
Illuminated Vehicle Signs		
New Lighting Innovation R&D		
S5.4 Photometirc Laboratory		
Lab Operations - Visual Guidance & NAS Visual Aides Support		
S5.5 Airport Signs & Markings		
EMAS Signs		
Experimental Heliport Operations & Maintence		
Frangible Connections		
SMMA		
Paint Marking Longevity		
New Sign & Marking R&D		
S5.6 NAS Visual Aides - Airports & FAA Lighting Systems Group		
VGSI & Approach Lighting Baffle Installations		
Approach Lighting R&D		
ICAO Support		
S5.7 Inpavement Light Fixtures		
Frangibilty Testing/Standards		
S5.8 Obstruction Lighting - FAA Obstruction Evaluation Group		
Obstruction Lighting Standards		
Lighting Dimming Solutions		
Aircraft Detection Lighting Systems		
Wind Turbine Lighting		
S5.9 Special Projects		
Taxiway Landings		
"Pop-up" Research Requests		



FAA Research Taxiway: Cape May County Airport (WWD)

- Single site to design, test, evaluate, monitor, and report on the performance of state-of-the-art airport safety and pavement technologies.
- Memorandum of Agreement (MOA) between FAA and Delaware River and Bay Authority (DRBA).
 - November 15, 2010 through September 30, 2030.
 - Grants the FAA the "right to construct, operate and maintain Research Infrastructure" at Cape May County Airport (WWD) in Erma, NJ
- Taxiway opened in April 2017



- Taxiway C
 - Length 3250 ft.
 - Width 50 ft.
 - Pavement Width 150 ft.
- Full array of Taxiway and Runway Lights
- State-of-the-art Lighting Vault
- Six Pavement Test Strips

FAA Research Taxiway Lighting Vault

FAA Research Taxiway Lighting Vault

FAA Research Taxiway: Research Plans

Safety Projects

- Obstruction lights with IR testing
- Electrical infrastructure testing EIRT Test Team
- Runway surface friction
- UAS integration at airports
- Future lighting research efforts

Pavement Projects

- Nondestructive Testing
- Field and Laboratory Characterization of Pavement Materials
- Long Term Aging Study of Various Paving Mixes

Infrared Requirements for Developing an LED High Intensity Runway Edge Light (HIRL) with Infrared (IR) Emitter

LED HIRL with IR: Objectives

Conduct research to develop an efficient and effective LED HIRL fixture with an IR signature compatible with Enhanced Flight Vision Systems (EFVS).

- Develop IR requirement based on legacy L-862 incandescent fixture measurement
- Perform IR measurements (IR power output in watts per steradian, and IR beam pattern) on the legacy tungstenhalogen FAA L-862 (HIRL), which current EFVS system's utilizes, to determine current IR output
- Develop prototype fixtures

LED HIRL with IR: Broad Agency Announcement (BAA)

Milestone	Date		
Phase 1 – BAA			
BAA Announcement Posted	2/2/16		
BAA Announcement Closed	2/19/16		
Phase 2 – Technical Summary			
Evaluation Period	2/22/16 — 3/10/16		
Candidates picked for RFP	4/20/16		
Phase 3 – RFP			
RFP Submission Period	4/21/16 — 7/31/16		
Phase 4 – Award			
RFP Evaluation Period	8/1/16 — 9/19/16		
Contracts Awarded to Two Companies	9/19/16		
Period of Performance	10/1/16 — 4/03/17		

LED HIRL with IR: Results

- Neither company could duplicate the complete IR signature of the legacy incandescent HIRL.
- Each company, however, provided technical and test documentation to support their assertion that the prototypes meet or exceed the IR output used by EFVS to acquire the legacy HIRL IR signature.

LED HIRL with IR: Results

Company 1:

Selected an incandescent source for the IR output consisting of two bulbs, rated at a nominal input 20W that can supply a minimum average radiant intensity matching that of a legacy L-862 fixture in the range of 1450-1850 nm.

LED HIRL with IR: Results

Company 2:

Selected an IR igniter for the IR output rated at a nominal input of 45W that can supply a minimum average radiant intensity matching that of a legacy L-862 fixture in the range of 1400-2500 nm.

LED HIRL: Next Steps

- Company 1: Delivered one prototype at end of the contract
- Company 2: Delivered six prototypes at end of the contract
- Fixtures are undergoing independent laboratory testing
- The Office of Flight Standards will validate that the prototype fixtures have the necessary IR output for use with EFVS

Aircraft Detection Lighting Systems (ADLS)

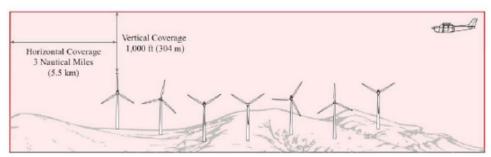
ADLS Overview

New technologies are available that use radar to detect aircraft approaching a specified volume of airspace and turn on the obstruction lighting

- Lights stay OFF most of the time
- Lights only come ON when an aircraft is detected

AC 70/7460-1L, Obstruction Marking and Lighting with Change 1, has new ADLS Chapter 14 – which provides details on system specifications

ADLS Radar



ADLS Sample Wind Farm Coverage Map

* Multiple ADLS units required for the above wind farm

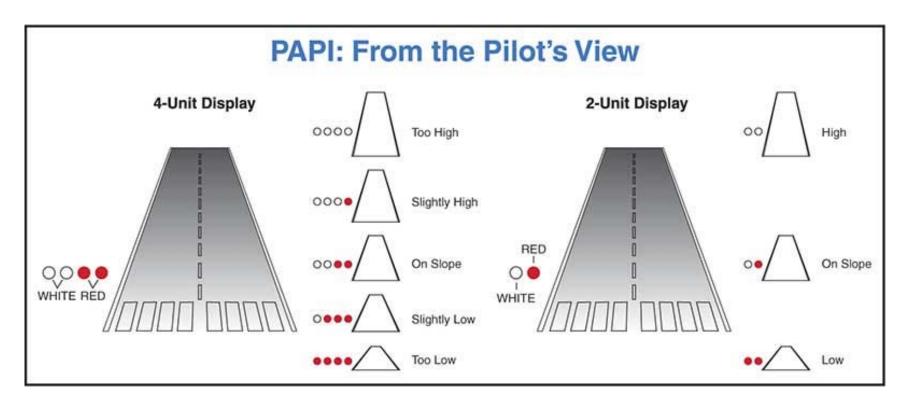
^{*} System above shown in active mode with aircraft in coverage area

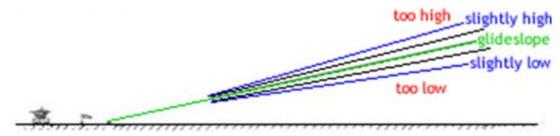
ADLS Assessment:Hancock, ME – October 2017

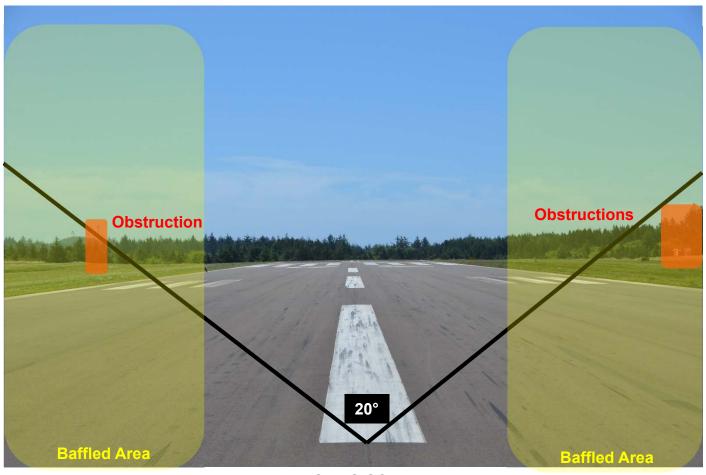
Obstruction Light Dimming

- Vendors suggesting a system that monitors weather/visibility near obstruction field and adjusts the light intensity accordingly
- Uses RVR-like sensors
- Uses input from numerous sensors and focuses on 'worst' reading
- INITIAL ASSESSMENT NOVEMBER 2017

Visual Glide Slope Indicators (VGSI) and Approach Lighting Baffle Efforts




Precision Approach Path Indicator (PAPI)

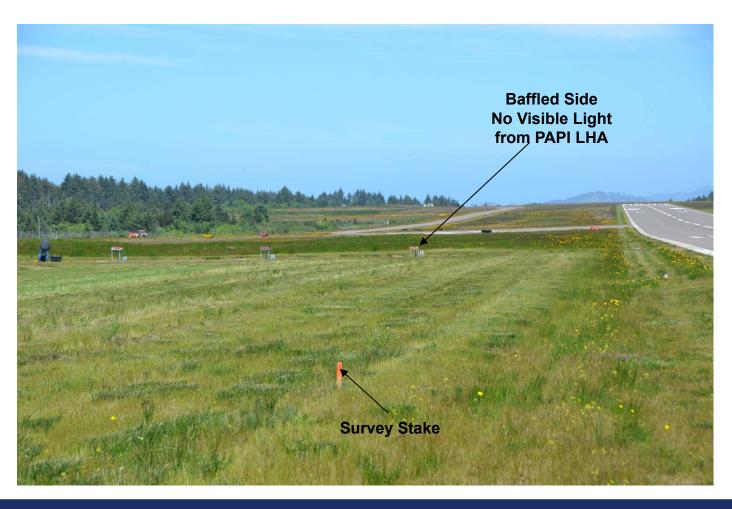


PAPI Baffle Installation

NOT TO SCALE

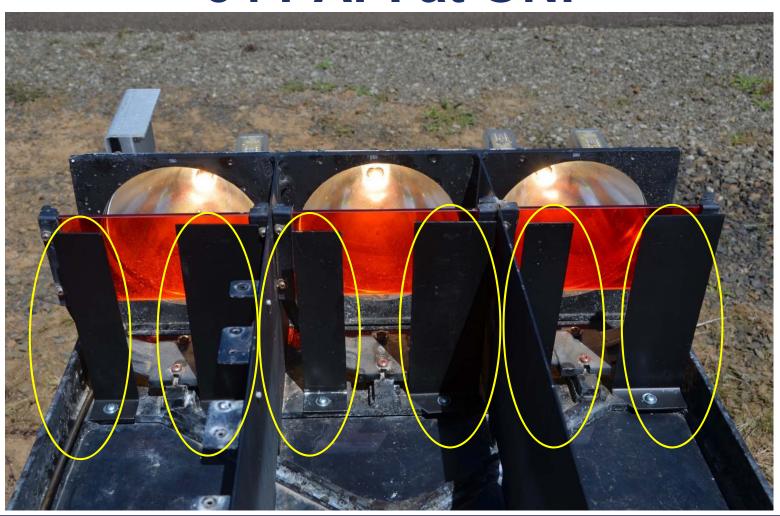
Newport Municipal Airport (ONP) Runway 34 PAPI Baffle

Newport Municipal Airport (ONP) Runway 34 PAPI Baffle



Newport Municipal Airport (ONP) Runway 34 PAPI Baffle

Newport Municipal Airport (ONP) Runway 34 PAPI Baffle



Newport Municipal Airport (ONP) Runway 34 PAPI Baffle

Baffles installed Inside Runway 34 PAPI at ONP

T.F. Green Airport (PVD) Runway Alignment Indicator Light (RAIL) Baffle Installation

PVD RAIL Baffle

2017 Completed Baffle Efforts

Airport	System Baffled	
Newport Municipal Airport (ONP), OR	PAPI	
LT Warren Eaton Airport (OIC), NY	2X PAPI	
Santa Monica Municipal Airport (SMO), CA	PAPI & VASI	
Tacoma Narrows Airport (TIW), WA	PAPI	
Portland International Airport (PDX), OR	PAPI	
Theodore Francis Green State Airport (PVD)	MALSR RAIL	

Medium Intensity Approach Lighting System (MALSR) Flight Testing

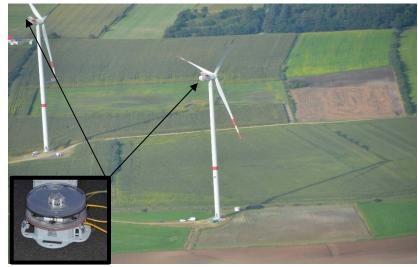
MALSR Flight Testing

- Evaluate the Visual Performance of Incandescent and LED MALSR Approach Light Systems
- Evaluate Incandescent and LED-IR PAR 38 Lamps with EFVS

Runway 4 Experimental MALSR – ACY

MALSR Testing – Juneau, AK

L-810(L) and L-864(L) Obstruction Light with IR Testing


Obstruction Light with IR Testing: Objectives

Conduct research to develop performance specifications for infrared (IR) emitters to be incorporated with L-810(L) and L-864(L) obstruction light fixtures.

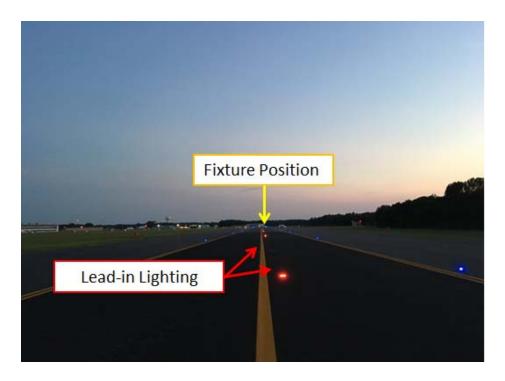
- Wavelength
- Vertical beam width

Minimum intensity

L-810 L-864

Obstruction Light with IR Testing: Project Overview

- Literature review
- Market survey
- Acquired samples of L-810(L) and L-864(L) fixtures, with IR and traditional incandescent fixtures
- IR laboratory testing
- Flight testing conducted on the FAA Research Taxiway at Cape May County Airport (WWD)
- Final report


Obstruction Light with IR Flight Testing Set-up

L-810 Fixtures

L-864 Fixtures

Obstruction Light with IR Flight Profiles

Flight Profile 1

Flight Profile 2

Obstruction Light with IR Flight Testing

Obstruction Light with IR: Recommended Specifications

Fixture	IR Wavelength	Vertical Beam Width*	Minimum IR Radiant Intensity
L-810(L-IR)	800-900 nm	Minimum 10- degree beam width, with the center between +4 and +20 degrees	4 mW/sr
L-864(L-IR)		3-degree minimum beam width	246 mW/sr**

^{*} Same vertical beam width as visible light

Fixtures with intensities as low as 4 mW/sr were seen at distances greater than 3.1 SM

^{**} The nominal L-864 peak effective intensity (2000 cd) is approximately 61.5 times the minimum intensity of the L-810 (32.5 cd). The minimum IR intensity for the L-864 is 61.5 times the IR minimum established for the L-810.

Questions?

Mike DiPilato

Airport Research Specialist Airport Safety R&D Section 609-485-7249

michael.dipilato@faa.gov

