

USMC Expeditionary Airfield Lighting Update LED Approach and Runway Lighting Systems

19 April 2022

NAVAIR Lakehurst, NJ

Robert Rinderer EAF Lighting & Marking Engineer

Reasons for Change

Obsolescence

- Unique incandescent fixtures
- Antiquated manufacturing processes
- Mechanical flash timers
- Xenon flash tubes

"Legacy" Runway Edge Light

- USMC Requirement to Support Deployed CAT-I Operations
 - Portable ASR/PAR system (ATNAVICS)
- Non-standard Approach Light Configurations
 - Could not support IFR flight operations during OEF/OIF

Program Objectives

- Priority = Approach Lighting Systems
 - Refurbished Legacy runway lights could support for short term
 - Leverage COTS technologies and processes as much as possible
 - Develop power and control infrastructure
 - Apply any "lessons learned" to future runway lights
 - "System" to include complete MALSR, REIL and CCR

"Legacy" Approach & Strobe Barrette

USMC Challenges

- Visible and covert capability
- Weather-proof and "lightweight" CCR

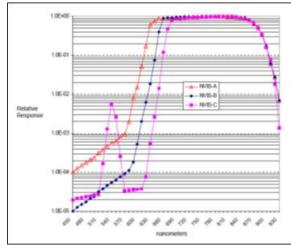
USMC Advantages

- No requirement for "backwards compatibility"
 - Power, control or fixture form factor
- Trained on constant-current circuits

Approach Light System (ALS) Design Approach

- MALSR Threshold & Steady Burner Fixtures
 - Base light engine on existing L-862(L) technologies
 - Add near-wave IR emitter
- MALSR SFL REIL
 - Base light engine on existing L-849(L) technologies
 - Add near-wave IR emitter
- CCR
 - Base performance on existing L-828 technologies
 - Fixture Centric approach
 - Intensity & Mode commanded by signal sent by CCR
 - Amplitude Shift Key (ASK) chosen

Night Vision Device Compatibility Design Approach


- "Entire Airfield" Strategy to Address Intensities
 - Approach > Runway > Taxiway

Risk Mitigation test fixture

- Specification Evolution
 - Historic Navy shipboard data
 - Unit of Measure = NVIS Radiant Intensity (NRI_B) (SAE-ARP-5825)
 - USMC flies both Class B & C NVGs
 - IR λ towards high end of linear response to reduce power requirement
 - "Risk Mitigation" testing
 - Fixed observers at Lakehurst Test runway
 - "Order of Magnitude" dimming profile
 - High ≈ 1x10⁻¹ W/sr
 - Med ≈ 1x10⁻² W/sr
 - Low ≈ $1x10^{-3}$ W/sr

from MIL-STD-3009

ALS Components MALSR Threshold and Steady-Burn

MALSR Threshold and Steady-Burn Fixture

- Identical except for Light Engine (LED color)
- Automatic heater gasket on window
- Center IR LED
- ~ 30-W per fixture

ALS Components REIL / MALSR-SFL

REIL / MALSR-SFL Fixture

- Flash synchronization regulated by CCR output waveform
- REIL or SFL function (internal DIP switch setting)
- Automatic heater gasket on window
- Center IR LED
- ~ 150-W per fixture

ALS Components CCR & Power Distribution System

- 4kW Ferro-Resonant CCR w/ QUADCON-based Distribution System
 - De-rated to 3.33kW to allow headroom for ASK operation (fixed 5.5-A)
 - Selectable output to support bi-directional runway ("A" or "B" loop)
 - Environmentally sealed
 - Wired remote

• < 300-lb

ALS Testing

Developmental Testing

- FAA-E-2980 and AC150/5345-51-derived photometrics
- MIL-STD-810 "qualification" criteria
 - Passed with minor corrections

Integration Testing

- Marine Corps Air Ground Combat Center, Twentynine Palms, CA
 - 8000-ft AM2 Matting runway with taxiways and parking ramps
- Installed prior to "Integrated Training Exercise (ITX)" SEP 2019
- Complete system installation (MALSR r/w 10; REIL r/w 28)
- Limited fixed-wing flights
 - No ATC Services
- "NVG operations are VFR only"
 - Consideration for the future
- System has remained installed
 - Largely VFR operations, but system continues to receive positive feedback

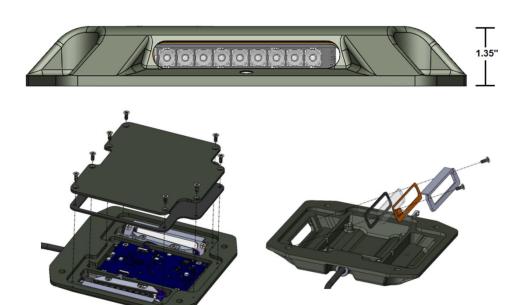
Runway Lighting System (RLS) Design Approach

- Lessons Learned from ALS
 - ASK-controlled infrastructure works
 - Simultaneous IR & visible unnecessary
 - Further dimming of IR output desirable
- Runway Edge and Threshold/End Light Fixtures
 - Meet L-862(L) & L-862E(L) performance
 - "Overt NVD" to allow "under the goggles" viewing ("<B1" intensity)
 - Maintain a low-profile fixture
 - Eliminate frangible couplings
 - Allow installation near Arresting Gear

4kW CCR

- Single design to accommodate both 5-step and 3-step configurations
 - No increase to message byte size
- Installs in existing space within Power Distribution QUADCON
 - 4 total: (1) for approaches; (2) for inter-leaved runway; (1) spare

RLS Components Runway Edge & Threshold/End Light

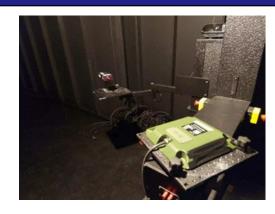


"Flapjack" Fixture

- Interchangeable LED modules
 - Straight or "toed" mounting
 - 9-LED Array, 8 vis + 1 IR
- Automatic heater gasket on window
- ~50-W per fixture

"Legacy" Threshold fixture vs. "Flapjack"

"Legacy Pancake" fixture vs. "Flapjack"



RLS Testing

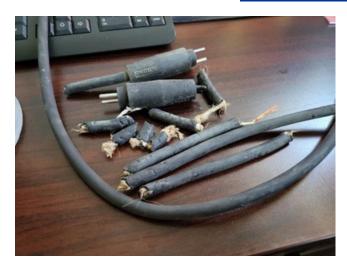
Developmental Testing

- AC 150/5345-46 photometrics
- MIL-STD-810 "qualification" criteria
 - Passed with minor corrections
- Arresting Gear interface evaluation
 - Confirmed requirement for "Cable Cover"

Trafficking evaluation

Arresting Gear Purchase Tape evaluation

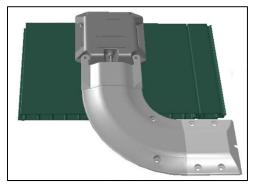
Integration Testing


- Expected late 2022/early 2023
 - To be installed with ALS at Twentynine Palms

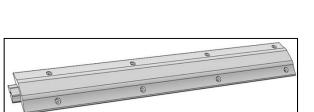
Unique Challenges to EAF - 1

- Wildlife Damage to Secondary Cables
 - Above-ground installation
 - Incidents have <u>ACCELERATED</u> in recent years

- #1 Maintenance concern
- Solutions or Advice?

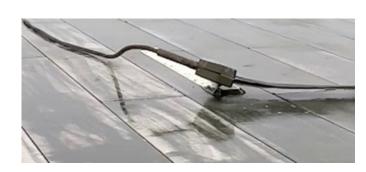


Unique Challenges to EAF - 2



• Interface with Portable Arresting Gear

- Difficult to replicate "Legacy" fixture
- Cable Cover concept


AM2 Mat concept

"Bare Base" concept

Purchase Tape traversing Cable Cover

"Legacy Flush-Deck" fixture

Tape Connector striking fixture

Unique Challenges to EAF - 3

- Portable Frangible Towers
 - Unique 1980's design based on FAA D-6155 drawing series
 - Out-of-date drawing package

Acknowledgements & Thanks

- NAVAIR Lakehurst Photometrics and Laser Labs
- Naval Flight Information Group (NAVFIG)
- Federal Aviation Administration
 - Flight Safety R&D
 - Lighting Systems
 - Flight Operations
- Marines of MWSS-271 and MWSS-374

MWSS-374 Marines installing REIL